
Comments

Ecology, 88(1), 2007, pp. 252–253
� 2007 by the Ecological Society of America
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In their paper ‘‘Does ecosystem size determine

aquatic bacterial richness?’’ Reche et al. (2005) observed

a significant correlation between lake surface area and

lake bacterial OTU (operational taxonomic unit)

richness in 32 lakes. The authors propose that this

relationship corroborates one of the predictions of the

island-biogeography theory, i.e., that larger islands

support more species than smaller islands (MacArthur

and Wilson 1967). The results of Reche et al. (2005) have

already been cited in support of a positive relationship

between habitat size and bacterial taxonomic richness

(Bell et al. 2005, Dolan 2005). We argue that the study

by Reche et al. (2005) does not provide support of a

causal relationship between bacterial richness and

habitat size, since their conclusions are biased by

incorrect merging of data sets that are not comparable

and because the methods used to determine bacterial

richness are not adequate.

The significant correlation between lake area and

bacterial OTU numbers obtained by Reche et al. (2005)

was based on data from three separate papers (Lind-

ström and Leskinen 2002, Zwart et al. 2002, Reche et al.

2005). Treated separately, the data from Lindström and

Leskinen (2002) and Zwart et al. (2002) show no

significant correlation between lake area and number

of OTUs detected (P ¼ 0.40 and P ¼ 0.20 respectively;

linear correlations of log-transformed data) while the

data from Reche et al. (2005) are almost significantly

correlated (P ¼ 0.072). When these three data sets are

merged, the correlation becomes significant (P , 0.001),

as reported by Reche et al (2005).

In two of the data sets (Lindström and Leskinen 2002,

Reche et al. 2005), OTU richness was determined by

counting the number of bands formed in denaturing

gradient gel electrophoresis (DGGE). This method is

commonly used in microbial ecology to obtain an image

of microbial community structures (e.g., Forney et al.

2004, Loisel et al. 2006). Some of the limitations of

DGGE are briefly discussed by Reche et al. (2005), for

instance they acknowledge that DGGE in the best case

only reflects the most dominant taxa. However, the

consequence of bacterial community structures being

skewed with few abundant and many rare taxa, a quite

likely scenario (Acinas et al. 2004, Venter et al. 2004,

Gans et al. 2005), is not addressed. If a low fraction of

the present populations was detected, a change in the

number of DGGE bands could reflect a change in rank-

abundance of populations (i.e., in the number of

populations above the threshold of detection) rather

than a change in richness (Forney et al. 2004). Thus, the

number of DGGE bands may provide a biased estimate

of richness, since it also depends on the evenness of a

community. Furthermore, a recent study combining

numerical simulations with laboratory experiments

(Loisel et al. 2006) demonstrates that the number of

bands or peaks obtained using DGGE and similar

methods is not related to the richness of communities.

Instead, the number of OTUs detected saturates around

35. Thus, the number of DGGE bands is a poor

estimator of community richness.

In the third data subset used by Reche et al. (2005),

i.e., the data from Zwart et al. (2002), OTU richness is

represented by the number of unique bacterial 16S

rRNA sequences obtained from seven different studies

screening clone libraries from nine lakes. Bacterial OTU

numbers as determined by DGGE band numbers

appears to saturate around 35 as reported by Loisel et

al. (2006). In contrast, the number of unique sequences

obtained from clone libraries from similar communities

can be much greater. In the data set compiled by Zwart

et al. (2002) the number of unique sequences per lake

ranged from six to 125, the average being 60. Therefore

clone library data are not comparable with DGGE data,

and accordingly these two types of data should not be

merged. Further, the available data (six lakes) from the

original references in Zwart et al. (2002) show that the

clone libraries screened range largely in size, at least

from 45 to 350 clones per lake. Since the number of

OTUs, or unique bacterial 16S rRNA sequences, from

each lake was not corrected for sample size (i.e., number

of clones picked) we suspect that the reported OTU

richness reflects the effort spent by the respective

researcher rather than community richness. Therefore,

these data are not suitable for analysis of how lake

surface area or other parameters are related to bacterial

richness.
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If the two remaining data sets from Reche et al. (2005),

i.e., the DGGE data sets, are merged there is a significant

correlation between DGGE band numbers and lake

surface area (linear correlation of log-transformed data,

P ¼ 0.002, r2 ¼ 0.379, n ¼ 23). Although DGGE band

numbers do not reflect richness of a community, and it is

unclear what it reflects as discussed above, a significant

correlation between DGGE band numbers and lake

surface area might still have some ecological meaning.

However, we question the merging of these two datasets

into one analysis. One-way ANOVA analyses show that

DGGE band numbers differ significantly between the

two sub-studies (P¼0.004), and there was also very little

overlap in lake sizes between sub-studies (0.0001–0.02

and 0.01–6.2 km2, respectively; P , 0.001). Hence, it is

plausible that a significant correlation between lake area

and DGGE band numbers was obtained only because

both lake area and DGGE band numbers depended on

sub-study, and instead alternative explanations to the

relationship found should be evaluated.

The laboratory protocols used in the two sub-studies

differed (Lindström and Leskinen 2002, Reche et al.

2005). For instance different primer pairs were used, and

thereby most likely different bacterial populations were

detected (see, e.g., Forney et al. 2004). Thus, due to the

differences in methodology, the two different studies

could have had different resolution and/or thresholds of

detection in their estimates of numbers of DGGE bands.

Further, we cannot exclude that the Spanish high

mountain lakes studied by Reche et al. (2005) for some

other reason than lake area harbored bacterial commu-

nities giving rise to fewer bands than the communities in

the Swedish and Norwegian lakes studied by Lindström

and Leskinen (2002). Thus, we cannot tangle out which

factors cause the difference in number of DGGE bands

between the two sub-studies. However, it is clear that

lake surface area is not the only possible explanation,

and there is no solid support for the idea of a causal

relationship between lake surface area and DGGE band

numbers.

To summarize, we argue that it still remains to be

shown if ecosystem size determines aquatic bacterial

richness.
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Lindström et al. (2007) found two major objections to

our paper (Reche et al. 2005) on the relationship
between bacterial richness of operational taxonomic

units (OTU) and lake size. First, from a methodological
perspective, they argue against the use of the number of
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bands in the denaturing-gradient gel electrophoresis

(DGGE) as a proxy for bacterial OTU richness. Second,

from a more theoretical perspective, they criticize the

causal nature of the relationship between OTU richness

and lake size.

To rigorously determine bacterial richness, as the

number of species in a given ecosystem, both a precise

definition of species and a total success in the DNA

recovery using molecular tools are required. Species

definition is controversial even for eukaryotes (Mayden

1997) and is especially controversial for prokaryotes

(Rosselló-Mora and Amann 2001). Rosselló-Mora and

Amann trust the phylo-phenetic species definition for

bacteria based mostly on pragmatic and well-defined

reasons. Diversity can be studied using any kind of unit,

as long as the definition is clear and used consistently in

all the study systems (Hughes et al. 2001). With

polymerase chain reaction (PCR)-dependent DGGE

techniques, only the taxa comprising more than 1% of

the total targeted cells can be detected, and those less

than 0.1% are difficult to retrieve. Certainly, DGGE

technique is not the perfect determination for the total

number of species present but we argue (e.g., Casamayor

et al. 2000) that the number of visible bands in

denaturant gradient polyacrylamide gels is a viable

metric for community structure.

Recently, Pedrós-Alió (2006) suggested the distinction

between the concepts of biodiversity (total genetic

information) and diversity (the components that are

active and abundant at one particular time and place)

proposed by Margalef (1994, 1997) and its potential

application to microbial diversity studies as a way out

for this methodological impasse. Some species are

present over time with high abundance and are probably

responsible for ecosystem function. Magurran and

Henderson (2003) called these ‘‘core’’ species. The

remaining species with low abundance and sporadic

appearance are ‘‘occasional’’ species. Consequently, the

number of bands obtained for a given lake may reflect

the number of core species or lake diversity sensu

Margalef, so long as the sampling effort is comparable.

The number of DNA bands in DGGE could determine

the richness of core species or, with less semantic risk,

OTU richness with the caution that this number is not

the absolute number of species or lake biodiversity.

Another reticence of Linsdtröm et al. on the

association between number of bands in DGGE

fingerprinting and the OTU richness is based on the

results obtained by Loisel et al. (2006). They found that

the maximum number of bands saturated about 35 and

alleged that some bands can represent more than one

phylotype due to co-migration (fuzzy-wide bands). In

our study, the samples neither from the high mountain

lakes nor from the boreal lakes (Lindström and

Leskinen 2002) showed more than 16 bands, far from

the upper limit proposed by Loisel et al. (2006). In

relation to the supposing occurrence of bands including

co-migrating phylotypes (fuzzy-wide bands), these phy-

lotypes will likely represent ‘‘sibling’’ species (analogous

to the different species belonging to a genus) and, then,

each band will correspond to a higher taxonomic

resolution (i.e., OTU will represent genus equivalents).

Horner-Devine et al. (2004) obtained significant taxa–

area relationships (TAR) using multiple OTU defini-

tions (95%, 97%, and 99% sequence similarity). This

range of definitions can be considered analogous to

different taxonomic resolutions (for example, TAR for

genus, species, and subspecies, respectively). Their

results support the consistence of TAR, although they

interestingly obtained different slopes (z values) and

significance levels for each taxonomic resolution.

Lindström et al. disapprove the data merging (i.e., our

own data and Lindström and Leskinen [2002] and Zwart

et al. [2002] data) that generated the significant OTU

richness–lake-area relationship based on the different

techniques used in each study. Generally, to get

ecological patterns using literature data it is necessary

to surrender to a miscellany of techniques. Of course, the

ideal situation is to use data obtained with identical

techniques, nevertheless, once a pattern emerges, the

presumption is that the pattern is strong enough despite

the noise associated with multiple techniques. Indeed, a

significant relationship (n¼ 22, r¼ 0.616, P¼ 0.0017, z¼
0.085 6 0.023 [mean 6 SE]) is also obtained when we

used exclusively the more comparable data that use

DGGE fingerprinting (Lindström and Leskinen 2002,

Reche et al. 2005). Therefore, we have little doubts about

the existence of a pattern between the number of DGGE

bands and the lake size. In addition, other studies using a

unique technique (e.g., Horner-Devine et al. 2004, Bell et

al. 2005, van der Gast et al. 2005) have reported

relationships between ecosystem size and bacteria

richness in different ecosystems, reinforcing the robust-

ness of this pattern. We believe that the debate should

address mechanisms that generate this pattern, the z

values variability across ecosystems or sampling condi-

tions, the limits where TAR can be found, and so on.

Under this motivation, Woodcock et al. (2006) point

out that a proper understanding of microbial TAR

seems unlikely without an appropriate appreciation of

sampling considerations. Current microbial data are

obtained from very small (clone libraries) or truncated

(fingerprinting methods) samples. However, it is incon-

ceivable that microbial ecologists will be able to verify

patterns by a complete census (biodiversity sensu

Margalef) with actual molecular techniques. Since the

species evenness and spatial clustering can profoundly

influence the shape of TAR (He and Legendre 2002,

Green and Ostling 2003), the awareness of the impor-

tance of both sample definition and sampling will

strengthen the search for microbial patterns under

comparable conditions. Recently, some evidences on
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the origin and robustness of TAR in ecology, even for

microorganisms, have been described by Garcı́a-Martı́n

and Goldenfeld (2006). They postulated that species–

area relationships are a general consequence of a species

abundance distribution resembling a lognormal distri-

bution with higher rarity, together with the observation

that individuals of a given species tend to cluster. These

propositions could also be applicable to bacteria in

lakes, although more exhaustive studies are needed to

corroborate these theoretical questions.
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There is abundant evidence that climate strongly

influences current patterns of species richness (Wright et

al. 1993, Hawkins et al. 2003a), but there have been few

attempts to generate global-scale models of climate–

richness relationships that can predict richness in areas

for which empirical data are lacking or predict how

richness will respond to global climate change. One such

modeling approach for woody plants was proposed by

O’Brien (1993), using gridded species richness and

climate data, based on the premise that Thornthwaite’s

minimum monthly potential evapotranspiration (PET, a

measure of winter energy inputs) and liquid rainfall (a

measure of water availability) are the key climatic

variables that set the environmental capacity for tree

richness at the macro scale in southern Africa. O’Brien

(1998) subsequently developed the first ‘‘interim general
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model’’ (IGM), derived from the initial southern African

model, but with reference to the whole of Africa.

O’Brien et al. (1998, 2000) then further modeled

southern African woody plants at the genus and family

levels (O’Brien et al. 1998) and included topographical

relief in all three models (species, genus, and family) to

capture orographic effects generating finer scale climatic

gradients (O’Brien et al. 2000). Field et al. (2005)

recently returned to the protocols developed by the

series of papers by O’Brien and colleagues to produce

five additional versions of the IGMs, with and without

topography, and at three taxonomic levels (species,

genus, and family). They also tested the ability of the

IGMs to predict woody plant richness patterns in

tropical Africa (Kenya) as well as to predict relative

richness patterns for the entire continent. Finally, they

compared and contrasted the IGMs with a soil water–

energy model developed by Francis and Currie (2003)

fitted to global angiosperm family richness, the merits of

which have also been debated by Qian and Ricklefs

(2004) and Currie and Francis (2004).

A key issue with any statistical model designed to

explain an ecological gradient is its ability to predict a

pattern in regions outside of the original study area. As

suggested by their names, the IGMs are intended to

predict the pattern and amplitude of tree (and shrub)

richness globally. However, although the test of the

IGMs using the newer Kenyan data represents an

independent test of the models, it remains that they

were parameterized and validated using data from

within Africa. Further, although IGM1 was previously

used to generate maps of the predicted climatic potential

for tree species richness in some nontropical regions

(USA and China; O’Brien 1998), the predictions could

not be validated with data at the same scale as her

analysis. Perhaps most importantly, the temperate

regions used to evaluate IGM1 do not extend north of

508 N, leaving a significant proportion of the world’s

landmass beyond the scope of O’Brien’s (1998) attempt

to examine IGM predictions against existing data. If the

IGMs are truly global, ideally they must be shown to

provide reasonable predictions in the northern temper-

ate and boreal zones, or at least it must be demonstrated

that the underlying logic of the models applies in all

climates.

O’Brien (1998) and Field et al. (2005) argued that in

mid to high latitudes, where minimum monthly PET

equals zero, IGMs can still be used to model tree

richness patterns since rainfall, which describes the

availability of liquid water, reflects conditions when

there is sufficient energy for trees to be active. The idea

that (liquid) rainfall can predict plant richness in the far

north is in stark contrast to theories claiming that energy

drives diversity gradients either via metabolic effects

operating at the cellular level (Allen et al. 2002, Brown et

al. 2004) or via a general intolerance of organisms to

very cold winter temperatures at high latitudes (Currie

1991, Hawkins et al. 2003b). Given that all previous

analyses of plant diversity encompassing high latitudes

have included explicit measures of energy either

independently of, or combined with, water variables

(e.g., actual evapotranspiration [Currie and Paquin

1987], Chickugo’s productivity model [Adams and

Woodward 1989], a rescaled inverse of annual temper-

ature [Allen et al. 2002], and annual PET or annual

temperature [Francis and Currie 2003]), the prediction

of Field et al. that tree diversity gradients in cold

climates can be reasonably modeled by rainfall alone

begs for empirical verification.

We generated a GIS database of tree species in North

America and Europe (generally defined as woody plants

reaching .4 m in height somewhere within their range).

A total of 676 species are represented in North America

north of Mexico and 187 species in Europe west of

Russia. The latitudinal span of the database is from 258

N to 708 N. Range maps obtained or generated from a

variety of sources were digitized in ArcGIS 8.3

(Environmental Systems Research Institute, Redlands,

California, USA) and rasterized at 110 3 110 km grain

size. The mapped area includes 1830 cells, 1444 in North

America, and 386 in Europe. Details of the sources and

maps illustrating the richness gradients will be presented

elsewhere.

Following O’Brien (1998) and Field et al. (2005), we

calculated the minimum monthly potential evapotrans-

piration (hereafter PETmin) using Thornthwaite’s for-

mula (Thornthwaite 1948, Bonan 2002), and rainfall was

estimated as total precipitation for all months with a

mean temperature above 08C. We also calculated

ln(transformed) elevation (derived from GTOPO30

digital elevation model [DEM] data with a horizontal

grid spacing of 30 arc-seconds (available online),3

maximum monthly PET and annual PET (calculated

as above), and annual temperature (available online)4 as

potential predictors of tree species richness. Finally, we

estimated the potential growing season as the number of

months when mean temperature was .08C.

Because the IGMs are parameterized for tree and

shrub richness, whereas our database comprises only

trees, we cannot directly compare observed vs. predicted

richness values using our richness data. More impor-

tantly, our climatic data are gridded and interpolated,

whereas Field et al. (2005) based their analysis on

weather station data, and a precise test of the

parameterized IGMs would require that our climatic

predictors be measured with the methods used by Field

3 hhttp://www.ngdc.noaa.gov/seg/cdroms/ged_iia/datasets/
a13/fnoc.htmli

4 hhttp://www.grid.unep.ch/data/summary.php?dataid¼
GNV15i
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et al. However, although we cannot generate predicted

values for each IGM against which to compare observed

richness, we can test the prediction that rainfall accounts

for tree richness better than energy in temperate

climates. As far as we know, the ‘‘water–energy

dynamics’’ hypothesis underlying the IGMs is the only

theory for diversity gradients that makes this prediction;

thus, this represents a relatively strong test of the

hypothesis. We test this using reparameterized equiva-

lents of the IGMs that contain combinations of the

variables predicted to explain diversity.

We first tested the independent contribution of the

energy component of the IGMs (PETmin) to tree richness

across both regions, which we expected to have limited

explanatory power given that it has a value of zero in

77.1% of our cells (80.6% of the North American cells

and 63.5% of the European cells). It explained 18.5% of

the variance. We then tested a model equivalent to a

‘‘reduced’’ IGM1 containing rainfall alone and found

that it accounted for 64.1% of the variance in tree

richness. Further, the relationship is linear throughout

the full range of the data (Fig. 1), indicating that rainfall

statistically explains tree richness in Alaska as well as in

Alabama, USA. There are noticeable outliers in both

North America and Europe (Fig. 1), which in the former

case are all Pacific Northwest coastal cells located

between Oregon and southern Alaska (where trees may

be unable to respond to the massive amounts of rain

falling within a short growing season), but in Europe the

outliers are scattered throughout the continent. Despite

these outliers, the prediction that rainfall limits tree

richness even in extremely cold climates is broadly

supported. This is further confirmed by adding PETmin

and ln(range in elevation) to the model (thus generating

the equivalent to a reparameterized IGM2). This model

explained 65.1% of the variance, only 1.0% more than

the reduced IGM1.

The ability of liquid rainfall to explain statistically

almost two-thirds of the variance in tree richness across

two continents dominated by cool climates seems to

confirm the logic underlying the IGMs as argued by

O’Brien (1993, 1998) and Field et al. (2005). But even if

true, we note that the coefficients of determination of the

IGMs vary between regions: the fitted IGM2 explains

78.8% of the variance in southern Africa and 79.1% of

the variance in Kenya, whereas in the Holarctic the

fitted equivalent of IGM2 explains 65.1% of the variance

(almost all due to rainfall). The reduced fit in the

Holarctic could be due to the use of an inappropriate

measure of energy (PETmin) when climates are cold, or

to the influences of factors found in the north that do

not operate in Africa (a possibility also noted by O’Brien

[1998]), especially in Europe. Although not discussed by

Field et al. (2005), O’Brien (1998) recommended that

when PETmin is ,14 or .45 mm and rainfall ,1000

mm, the maximum monthly PET (i.e., energy input in

the summer) should be used rather than the minimum

monthly PET. In the Holarctic 95.2% of the cells have

PETmin of ,14 or .45, and 90.5% have rainfall ,1000

mm, so we used PETmax to generate a modified

equivalent to IGM1, which increased the explanatory

power of the model to 64.7%, only 0.6% more than the

rainfall model. We also converted annual temperature

using one of the linear transformations dictated by

metabolic theory (1000/[Tþ 273]; Allen et al. 2002) and

added it to the rainfall model to investigate its ability to

FIG. 1. Relationship between annual rainfall (precipitation falling in months with an average temperature .08C) and tree
species richness in 1103 110 km cells in North America and Europe. Coastal cells with land areas ,50% of inland cells have been
excluded.

January 2007 257COMMENTS



improve the predictions. However, it explained only an

additional 1.2% of the variance, so temperature provides

no explanatory power beyond that provided by rainfall

(it independently explained only 21.8% of the variance in

richness). Finally, we examined annual PET (which by

itself explained 44.7% of the variance in tree richness)

and found that it improved the coefficient of determi-

nation of the rainfall model to 0.681, enough to suggest

that energy input summed over the entire year has a

measurable effect on tree richness independently of

summer conditions. Even so, it appears that using a

range of measures of energy does not greatly improve

the fit of the models, so additional processes unrelated to

contemporary climatic conditions may be operating in

the temperate zone (e.g., Pleistocene glaciation cycles,

edaphic effects, or human impacts). Future research can

explore this issue.

Given the clear importance of rainfall to tree richness

gradients over this span of latitudes, it is also necessary

to ask if richness is most strongly associated with the

total amount of rainfall falling over the growing season

or, as alluded to above with respect to the Pacific coast,

if the length of the growing season itself is what matters.

Growing season varies substantially between Alaska

and Florida (or Norway and Greece), and annual

rainfall is greater towards the south partially as a conse-

quence of the extra time over which water accumulates.

Indeed, there was a strong correlation between length of

growing season and annual rainfall (r ¼ 0.800),

indicating that the latter contains an implicit energy

component. However, growing season length explained

substantially less of the variance in tree richness than

rainfall (47.7% vs. 64.1%, respectively), and adding

growing season to the rainfall model increased the

coefficient of determination by only 0.007. So, tree

richness appears to be associated more with the total

amount of rain than with the length of time over which

the rain falls. It is important to note that this does not

mean that energy does not influence tree richness, only

that it is not critical to include an explicit energy

variable in climatically based models.

In sum, the logic underlying the IGMs is able to explain

the broad species richness patterns of trees reasonably

well in regions strikingly different climatically from the

regions used to generate the models, and the supposition

of O’Brien (1998) and Field et al. (2005) that summer

rainfall by itself represents a reasonable predictor of tree

diversity in northern latitudes is confirmed. Thus, we

have an independent validation of the explanation for

woody plant species richness gradients developed by

O’Brien (1993, 1998) and Field et al. (2005). Of course,

contemporary climate cannot explain everything, since

climate models, including the IGMs, lack the speciation–

extinction dynamics that are needed to link the past with

the present. Even so, if we want to understand how

currently existing tree species distribute themselves

geographically, ‘‘water–energy dynamics’’ seems to offer

a useful conceptual and empirical framework.
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GLOBAL MODELS FOR PREDICTING
WOODY PLANT RICHNESS FROM
CLIMATE: REPLY

RichardField,1,3 EileenM.O’Brien,2 andChris P.Lavers1

Hawkins et al. (2007) have provided strong and
significant empirical support for water–energy dynamics,

and thus climate, being a fundamental factor limiting the

global distribution of terrestrial plant richness, as

outlined in Field et al. (2005). Contrary to common
expectations, Hawkins et al. find that rainfall, not

energy, appears to be the most significant factor in the

mid-to-high latitudes. In so doing they lend further

empirical support to the global applicability of the
Interim General Models (IGMs; O’Brien 1998, Field et

al. 2005) and to the theoretical premise underlying this

relationship: biological relativity to water–energy dy-

namics (O’Brien 2006). For a trans-scalar model of how
spatial variation in water–energy dynamics might trans-

late into richness patterns, see Lavers and Field (2006).

IGM-1 and IGM-2 of the climatic potential for

richness are of the form

species richness }�aþ Ran þ PETmin � ðPETminÞ2

½þlnðrange in elevationÞ; IGM 2 only�

where a is a constant, Ran is mean annual rainfall, and

PETmin is minimum monthly potential evapotranspira-

tion.

One inherent prediction of the IGMs is that rainfall

alone (as opposed to precipitation) should predict
reasonable, if not close fit, richness values if PETmin is

zero. This includes mid-to-high latitudes, where the

energy conditions associated with liquid water (optimal

energy) do not occur year round: water is often frozen,

unlike in lower latitudes. In such areas, the horizontal

energy component in the IGMs is redundant. The

vertical energy parameter (topographic relief) remains

as a dynamic parameter, though the effect of variable

elevation when water is frozen at sea level is qualitatively

different from its effect when energy is optimal. In mid-

to-high latitudes, rainfall tends to increase with ambient

energy during the course of a year; if PET never exceeds

zero then all water on land is ice. In other words, rainfall

incorporates the most biologically important part of

abiotic energy in colder climates (Field et al. 2005), and

so should produce a good fit with tree richness in mid-to-

high latitudes. Hawkins et al. (2007) test this idea with

tree richness and climate data for 12 100 km2 equal-area

grid cells covering North America and Europe (N ¼
1830). Although they did not analyze how well IGMs

predict richness (due to differences in the response

variable), they did analyze the significance to tree

richness of the different parameters included in IGMs

as well as other traditional models, such as annual PET,

annual actual evapotranspiration (AET), and annual

temperature. Annual AET, as expected for this part of

the world, is the strongest single correlate of richness

across the whole study area (r¼ 0.84 compared with r¼
0.80 for rainfall). However, as outlined in Field et al.

(2005), it is not a climate variable but an outcome of

climate (atmospheric water–energy dynamics governing

precipitation and potential evapotranspiration) that is

used to index the soil water budget. Hawkins et al. (2007)

found that, contrary to common belief, rainfall is a much

stronger correlate of richness than pure energy variables

(temperature, PET).

Rainfall (liquid water) is a significant factor at all

latitudes, increasingly so where energy limits water

availability seasonally (both at low latitudes where

energy can be excessive and at mid-to-high latitudes

where it can be insufficient). The results that Hawkins et

al. (2007) report add empirical support for the optimal

nature of the relationship of energy not only with the

capacity for water to do work, but also with life’s

capacity to do work (O’Brien 2006). Where (and when)

PETmin exceeds zero, horizontal variability in energy

conditions (positive–negative energy effects) is essential

to explaining richness gradients (O’Brien 1993, 1998). It

drives all work done by water in two ways: first, via the

capacity of water to do work molecularly, including

changes in state; and secondly, via the hydrologic cycle,

which drives atmospheric thermodynamics and heat

exchange globally. This should lead to underprediction

by the rainfall-only model where PETmin . 0. In these

areas of underprediction, we expect energy variables to

be important.

The data used by Hawkins et al. (2007) contain some

interesting geographic patterns that they do not

mention, but which are relevant to what they say. Using

the same data (kindly provided by Bradford A.
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Hawkins), we re-ran their analysis and mapped the

residuals, in the same way that O’Brien et al. (2000) did.

We briefly discuss the salient features of the resulting

map. Hawkins et al. intend to publish a fuller analysis of

their data, so we limit our focus to the residuals from the

regression of tree richness on rainfall, which Hawkins et

al. (2007) performed.

Fig. 1 shows the residuals from the cross-continent

rainfall model reported by Hawkins et al. (2007). We

identified four clusters of negative residuals and three

clusters of positive ones, all of which are remarkably
spatially coherent. The negative residuals (clusters 1–4)

indicate overprediction: fewer tree species are present

than are expected from the cross-continental fit between

tree richness and rainfall. The positive residuals (clusters

5–7) show underprediction: more species are present

than expected from rainfall alone. Clusters were

identified on the basis of residuals that differ from fitted

values by more than one standard error of the estimate

(SEE, or RMSE root mean square error). Only residuals

greater than 2 3 SEE are considered gross errors of fit.

Those within 1–2 SEE are considered ‘‘reasonable fits’’

and those within 1 SEE ‘‘close fits.’’

The two largest regions of overprediction (clusters 1

and 4) are the west coasts of the two continents, north of

about 408 N. Both contain cells that are reasonable fits

(observed richness within 2 SEE of the fitted value)

surrounding cells with gross errors of fit (.2 SEE). The

other clusters of overprediction (clusters 2 and 3) are the

southern Great Plains of the United States and the far
eastern part of Canada. Neither contains gross errors of

fit; instead, these clusters comprise reasonable (,2 SEE)

but not close (,1 SEE) fits, markedly clustered spatially

rather than randomly distributed. The largest region of

underprediction (cluster 6) is the deciduous forest biome

of the eastern United States, including the Appala-

chians. The chaparral regions of the southwestern

United States and the Balkan peninsula of Europe are

FIG. 1. Map of the residuals from the cross-continent regression of tree species richness on mean annual rainfall, with grain size
¼ 12 100 km2. Residuals are shown in seven categories, according to the size of the error relative to the standard error of the
estimate (SEE) of the model. More than two standard errors represent a gross error of fit. Seven spatial clusters of residuals are
identified on the map and are discussed in the text. Circles and plus (þ) signs represent overprediction by .1 SEE (negative
residuals); triangles and minus (–) signs represent underprediction by .1 SEE (positive residuals), consistent with O’Brien et al.
(2000). Clusters are identified as spatially aggregated cells that are reasonable fits (observed richness within 2 SEE of the fitted
value; dashed lines) surrounding clusters of cells with gross errors of fit (.2 SEE; solid lines). All clusters of overprediction consist
entirely of cells with negative residuals; all cells in the clusters of underprediction have positive residuals except for three cases in
cluster 5.
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also underpredicted. Some details of the clusters are

given in Table 1. Clusters 1 and 4 both have relatively

high rainfall, typically far in excess of PET, which is low;

thus much of the water tends to be runoff unused by

trees. This is likely to reduce the fit between rainfall and

tree species richness. The data set comprises cells with

.50% land area, so that there is some potential for

species–area effects. Within cluster 1 there is a positive

correlation (r ¼ 0.55) between the residuals from the

cross-continent rainfall model and cell area; there is a

corresponding but weaker correlation (r ¼ 0.36) within

cluster 4. A third, small region of slight overprediction

(not identified as a cluster) is in Florida, where it is very

wet, but PET is high, so that AET is relatively close to

PET. This region is also very flat. In cluster 6 AET is

close to PET, and there is year-round precipitation,

suggesting that most of the water can be used by plants.

Within this region the correlation between rainfall and

tree species richness is very strong and linear (r¼ 0.87),

but the (extrapolated) intercept is high and positive,

suggesting that some other factor(s) is increasing

richness at all rainfall levels. Interestingly there is no

correlation between topography and richness in this

region; the same is true for cluster 5. In contrast, the

region of overprediction in the Balkans of Europe

(cluster 7) has quite a weak correlation between richness

and rainfall (r¼ 0.45), but quite a strong one (r¼ 0.66)

with ln(range in elevation).

Examination of the clusters of overprediction and

underprediction suggests a range of factors that might

help to explain the deviation from the overall rainfall

relationship, including seasonality, human activity, and

glaciation history. Some of the clusters are suspected to

be ‘‘impoverished,’’ having fewer species than expected

from their climate (e.g., the United Kingdom, in cluster

4). The southern Great Plains region (cluster 2),

although in reasonable accord with its climatic potential,

is well known to have lower than expected tree richness,

not because of climatic conditions, but because of a long

history of burning (e.g., Mann 2005, and references

therein; though burning was practiced over a much

wider area than that covered by cluster 2). Across the

other clusters (N¼ 402 cells), annual actual evapotrans-

piration (AET) is very strongly correlated with species

richness (r ¼ 0.91). The equivalent correlation with

annual potential evapotranspiration (PET) is weaker,

but still strong (r¼ 0.64), and virtually identical to that

with annual temperature (r¼ 0.63). The correlation with

PETmin is very weak (r¼�0.15), but consistent with the

fact that near-freezing minimum temperatures dominate

TABLE 1. Summary statistics for the cells with overprediction and underprediction of tree species richness from the rainfall model.

Error category N Richness Predicted Rainfall PET PETmin AET TOPOG

A) Means (overall, Europe þ North America)

�3 SEE þ 15 36.5 (3.3) 134.0 (6.7) 1485 (75) 490 (59) 8.9 (1.7) 374 (33) 1240 (253)
�3 to �2 SEE 21 35.5 (3.9) 89.3 (3.5) 985 (39) 421 (48) 6.5 (1.6) 341 (34) 979 (278)
�2 to �1 SEE 160 27.1 (1.6) 54.0 (1.7) 590 (19) 558 (26) 3.7 (0.6) 441 (16) 593 (59)
�1 to þ1 SEE 1373 35.4 (0.8) 37.1 (0.7) 402 (8) 530 (8) 1.8 (0.1) 396 (6) 682 (20)
þ1 to þ2 SEE 206 93.2 (2.5) 62.1 (2.3) 681 (26) 884 (15) 3.8 (0.4) 629 (17) 849 (60)
þ2 to þ3 SEE 53 117.1 (2.8) 66.0 (2.9) 725 (33) 819 (23) 2.6 (0.8) 679 (24) 780 (91)
þ3 SEEþ 2 134.0 (1.0) 66.9 (1.5) 735 (17) 771 (6) 0.0 737 (5) 645 (39)

Overall 1830 43.7 (0.8) 43.7 (0.7) 475 (8) 579 (7) 2.3 (0.1) 434 (5) 704 (18)

Clusters

B) Means (within clusters, with jresidualj .2 3 SEE)

1 18 34.4 (3.6) 115.5 (8.8) 1278 (98) 488 (50) 5.4 (1.6) 369 (32) 1835 (289)
4 17 34.1 (2.2) 98.0 (4.1) 1082 (46) 407 (58) 10.2 (1.6) 332 (37) 332 (55)
5 4 78.0 (6.0) 24.9 (4.1) 266 (46) 1139 (103) 15.5 (3.2) 346 (23) 2585 (201)
6 45 124.1 (2.4) 72.4 (2.5) 796 (28) 793 (21) 1.5 (0.6) 739 (19) 628 (65)
7 6 95.8 (1.3) 45.9 (2.2) 500 (24) 788 (19) 1.4 (1.4) 470 (24) 669 (65)

C) Means (full clusters)

1 47 24.1 (2.4) 71.4 (6.4) 785 (72) 404 (31) 2.2 (0.7) 327 (18) 1996 (183)
2 40 22.5 (1.8) 48.1 (1.6) 524 (18) 985 (16) 2.4 (0.4) 637 (18) 413 (27)
3 49 16.1 (0.7) 39.5 (0.7) 428 (8) 345 (9) 0.0 359 (7) 439 (23)
4 60 36.8 (1.3) 75.5 (2.4) 831 (27) 413 (27) 8.6 (0.8) 341 (16) 233 (31)
5 59 54.1 (2.2) 27.3 (1.9) 292 (21) 1130 (16) 7.1 (0.8) 346 (13) 1976 (102)
6 158 120.8 (1.7) 83.1 (1.8) 915 (20) 856 (13) 3.6 (0.4) 784 (12) 415 (29)
7 29 82.7 (2.1) 49.9 (1.6) 545 (18) 710 (12) 1.3 (0.6) 492 (17) 460 (56)

Notes: Values shown are means and SE (in parentheses). Explanation of variables: N, number of cells; rainfall, mean annual
rainfall (mm); PET, mean annual potential evapotranspiration (mm); PETmin, minimum monthly mean PET (mm); AET, mean
annual actual evapotranspiration (mm); TOPOG, range in elevation (m). (A) Across the whole study area, cells for which fitted
richness values differ from actual richness by the number of standard errors of the estimate (SEE) are indicated in the first column.
(B) Within the clusters (shown in Fig. 1; cluster identity number is shown in the first column), only those cells for which there is a
gross error of fit (i.e., the absolute residual is more than twice the SEE). (C) The entire clusters, including cells with close fits (,1
SEE), reasonable fits (,2 SEE), and gross errors of fit (.2 SEE).
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the study area: most PETmin values are zero. The
correlation with ln(elevation range) is minimal and not

significant. This is not unexpected, since the relationship
between elevation and richness is indirect, via its
relationship with energy (and thus water–energy dy-

namics), and is consistent with earlier analyses (e.g.,
O’Brien 1993, 1998, O’Brien et al. 1998, 2000). These
results, together with those of Hawkins et al. (2007),

serve to emphasize that, although the critical variable is
liquid water, its capacity to do work is always a function
of ambient energy conditions (O’Brien 1993, 1998,

2006). Since spatial variability in energy parameters
should always be associated with spatial variability in
water–energy dynamics, measures of ambient energy
help to account for the spatial patterning of tree species

richness in regions where the rainfall model produces a
poor fit: relatively localized parts of the continents.
However, as found by Hawkins et al., pure energy

variables (e.g., PET or temperature) alone do not
capture the relationship between living organisms and
abiotic water–energy dynamics at the cross-continent

scale.
The foregoing analysis furthers the potential for

operationalizing hierarchy theory: once climate can be

accounted for, we can move from the macro scale to
meso and micro scales of analysis and analyze variation
in richness while holding climate constant. In other
words, we advocate starting with climate when trying to

understand and model terrestrial species richness. Other
parameters and dynamics should come into play
progressively, in a hierarchical and trans-scalar fashion

(e.g., O’Brien et al. 2000, Whittaker et al. 2001, O’Brien
2006).
The results of Hawkins et al. (2007), and those

presented here, bring to the fore another key point with
regard to developing general explanations and global
models of climate–richness relationships. An underlying
assumption in analyses of climate–richness relationships

is that the distributional ranges of species (and thus the
geography of richness) reflect climatic potential. Other-
wise the samples are not representative of the relation-

ship between climate and richness, which is likely where
the flora and its richness are still recovering from
glaciation. This is one of the main reasons why O’Brien

(1993, 1998) used southern Africa to develop empirical

relationships and Africa to develop general relation-
ships. In empirical work, areas for which the assumption

is clearly unreasonable may be excluded from analyses
that aim to determine the equilibrial relationship of
climate with richness. A byproduct of this practice is

that, once the role of climate has been identified, it can
then be held constant when examining how other factors
relate to richness (O’Brien 1998). Within the region

covered by the data set of Hawkins et al. (2007), actual
richness is known to be less than potential richness as a
function of climate alone on the west coasts of Europe

and northern North America (O’Brien 1998). If these
areas (clusters 1 and 4) are excluded from the data set,
the cross-continent rainfall model accounts for 77% (N¼
1723) of the variance in tree species richness, consider-

ably more than the 64% (N¼1830) reported by Hawkins
et al., and more even than AET (72%; N ¼ 1723).
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