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 Remote lakes are usually unaffected by direct human infl uence, yet they receive inputs of 

atmospheric pollutants, dust, and other aerosols, both inorganic and organic. In remote, alpine 

lakes, these atmospheric inputs may infl uence the pool of dissolved organic matter, a critical 

constituent for the biogeochemical functioning of aquatic ecosystems. Here, to assess this 

infl uence, we evaluate factors related to aerosol deposition, climate, catchment properties, and 

microbial constituents in a global dataset of 86 alpine and polar lakes. We show signifi cant 

latitudinal trends in dissolved organic matter quantity and quality, and uncover new evidence 

that this geographic pattern is infl uenced by dust deposition, fl ux of incident ultraviolet radiation, 

and bacterial processing. Our results suggest that changes in land use and climate that result in 

increasing dust fl ux, ultraviolet radiation, and air temperature may act to shift the optical quality 

of dissolved organic matter in clear, alpine lakes.         
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 R
emote lakes have been recognized as sensors of global 
change 1 – 3  and are key freshwater reference sites for global-
scale processes, owing to their location outside of direct 

human infl uence. However, remote lakes are also subject to the dep-
osition of atmospheric pollutants, mineral dust, and organic matter 
transported by aeolian processes 4 – 7 . Despite the relatively small area 
covered by lakes and other freshwater ecosystems on a global basis, 
the movement of carbon through these ecosystems is dynamic and 
relevant for regional and global carbon budgets 8 . Dissolved organic 
matter (DOM), the major form of aquatic organic carbon, has key 
functions in aquatic ecosystems that include supplying energy to 
support the aquatic food web and absorbing ultraviolet radiation 
and light, thereby regulating their penetration in the water col-
umn. DOM in lakes located below treeline is strongly infl uenced 
by catchment vegetation inputs 9 . In contrast, alpine lakes (that is, 
above treeline) are oft en located above the atmospheric bound-
ary layer (1,000 to 1,500   m a.s.l.), and generally on barren catch-
ments or catchments with poorly developed soils and vegetation. 
Th erefore, autochthonous DOM production, atmospheric inputs 
of organic matter, and climatic controls may have a greater bearing 
on dissolved organic carbon (DOC) concentration and quality in 
alpine lakes than inputs from terrestrial vegetation. In this respect, 
our understanding of atmospheric infl uences on DOM dynamics in 
alpine lakes is limited. Th us far, it has been recognized that organic 
matter travelling in Saharan dust plumes represents an important 
input of DOM to alpine lakes, such as those in the Sierra Nevada, 
Spain 10 . Estimates of the organic fraction associated with dust events 
vary widely, but long-term monitoring studies of atmospheric dep-
osition close to dust sources agree that at least 8 %  to 14 %  11,12 , of 
the particulate matter is organic carbon. Th e organic fraction is 
mainly attributed to anthropogenic pollutants partitioning onto the 
mineral surface, which can occur in fi ne (    <    10    μ m in diameter) 14  
or coarse (    >    10    μ m in diameter) 11,13  particles. Th is organic fraction 
has also been associated with crustal source areas, such as soils 7,11 , 
and may originate from erodible lake sediments 15  and primary bio-
logical aerosols, such as bacteria, fungi and pollen 16 , much of which 
is larger than 10  μ m. In addition to potentially increasing dust 
transport 17  and associated atmospheric deposition of nutrients and 
organic matter, rising temperatures associated with climate change 
will reduce ice cover 3 , accelerate glacial melt 18 , increase water resi-
dence time 19 , and consequently increase ultraviolet exposure 20  and 
atmospheric exposure in general. Together, these conditions may 
alter the chemical and optical properties of DOM (that is, chromo-
phoric DOM or CDOM). 

 Sources and spatiotemporal variability of DOM have been 
tracked successfully with optical properties obtained from ultravio-
let-visible absorbance and fl uorescence spectroscopy measurements, 
such as molar absorption, spectral slopes 21,22 , fl uorescence indices 23  
and fl uorescent components found in excitation – emission matrices 
(EEMs) 24,25 . Th ese optical properties also impart valuable biological 
and chemical information about DOM, such as degree of aromaticity, 
bioavailability, light attenuation and molecular weight. For example, 
slopes of the ultraviolet-visible absorption curve provide informa-
tion about algal and terrestrial humic contributions to the DOM 
pool 22  and the proportion of low molecular weight compounds that 
absorb at short wavelengths to high-molecular weight compounds 
that absorb at longer wavelengths 21 . Th ese and other optical spectro-
scopic measurements are more sensitive parameters to environmen-
tal changes than measurements of DOC concentration alone 21,26 . 

 To better understand the dominant controls on DOM and its 
optical properties in remote aquatic ecosystems, we sampled 86 glo-
bally distributed remote lakes and evaluated relationships between 
DOM and factors that change over latitude, such as the Ozone Mon-
itoring Instrument (OMI) aerosol index (AI) 27 , OMI clear-sky ultra-
violet radiation (CS ultraviolet  λ  ) 28 , mean annual precipitation, and 
other external factors, such as the percentage of vegetation cover 

and elevation, but also within-lake factors, such as water residence 
time, chlorophyll- a  (Chl  a ) concentration, and bacterial abundance 
(BA), ( Fig. 1 ;  Supplementary Tables S1 – S6 ). Our sampling included 
alpine lakes within the Saharan dustbelt (Atlas, Sierra Nevada, Pyr-
enees, and Tyrolean Alps) and within other aerosol infl uences (Pat-
agonia), as well as remote lakes at low elevations (    <    1,000   m a.s.l.) 
outside of major dust infl uences (Antarctica and the Arctic) ( Fig. 1;  
 Supplementary Figure S1 ). Th is choice of remote lakes in catch-
ments containing little or no vegetation provided a latitudinal 
transect from both the northern and southern hemispheres that 
allowed us to explore spatial gradients in DOC concentration and 
optical properties without an overprinting eff ect from catchment 
vegetation. Also, very clear (low DOC) lakes were included in the 
dataset to increase the probability of detecting infl uences on DOM 
optical properties. Here we show that atmospheric dust inputs and 
ultraviolet radiation combined with bacterial processing of DOM 
may jointly infl uence the observed latitudinal trends in the optical 
properties of alpine lake DOM.  

 Results 
  Latitudinal trends in DOM optical properties  .   In alpine lakes, 
we observed signifi cant latitudinal trends for DOC concentration 
and optical properties of DOM, namely ultraviolet absorption 
( a  250 ), total fl uorescence ( F  total ), spectral slope curve values ( S  c λ  ) 22 , 
and the spectral slope ratio ( S  R ) 21  ( Fig. 2   Supplementary Tables S7 
and S8 ). By contrast, the Arctic and Antarctic lakes we sampled 
lie outside of the main aerosol infl uence (AI    =    0) and did not 
refl ect these latitudinal trends ( Fig. 2 ). Additionally, Arctic lakes 
were located in the tundra with a greater fraction of their 
catchments covered with vegetation ( Supplementary Table S3 ). 
Th us, their higher allochthonous terrestrial C inputs likely also 
contribute to their higher spectral slope, ultraviolet absorption, and 
DOC concentration. 

 Th e spectral slope ratio ( S  R ) is a metric from ultraviolet-visible 
absorption spectroscopy, where the slope in the short-wavelength 
range ( S  275 – 295 ), low-molecular weight region is related to the slope 
in the longer wavelength range ( S  350 – 400 ), higher molecular weight 
(    >    1,000 Daltons) region 21 . Th e spectral slope curve at 370   nm ( S  c370 ) 
is similar in position to peaks of reference humic and fulvic acids 
reported in ref.   22. Excluding polar lakes, the most striking lati-
tudinal changes ( Fig. 2 ) were in the  S  R , which increased by almost 
two units from Lac d ’ Ifni in the Atlas Mountains of Morocco to 
Gossenk ö llesee in the Tyrolean Alps, and the spectral slope curve 
at 370   nm ( S  c370 ), which decreased substantially with increasing 
latitude ( Fig. 2 ;   Supplementary Table S8 ). AI and clear-sky ultra-
violet radiation were signifi cantly related to  S  c370  ( r     =    0.62,  P     <    0.001, 
 N     =    49 and  r     =    0.53,  P     <    0.001,  N     =    49, respectively) and  S  R  ( r     =        −    0.51, 
 P     =    0.001,  N     =    45 and  r     =        −    0.41,  P     =    0.005,  N     =    45, respectively) and 
increased signifi cantly with proximity to the Saharan dust source 
( Fig. 2 ). Any correlation between the percentage of vegetation cover 
in the lake catchments and spectral parameters from absorbance 
was lacking in alpine lakes. Th is suggests that terrestrially derived 
DOM from the catchment did not signifi cantly contribute to these 
changes in spectral slope curve and spectral slope ratio.   

  Fluorescence characteristics  .   Fluorescence characteristics of dry 
deposition samples were strikingly similar to those of alpine lakes 
on barren, rocky terrain and quite unlike those of polar lakes. In 
particular, three-dimensional excitation – emission matrix spectra 
(EEMs) of water soluble organic carbon (WSOC) from dry deposi-
tion and DOM in clear, alpine lake samples had intense peaks in 
the short excitation and emission wavelength range typically associ-
ated with amino-acid fl uorescence and less intense peaks at longer 
emission wavelengths associated with the presence of humic sub-
stances ( Fig. 3 ). Parallel factor analysis (PARAFAC) modelling 
( Supplementary Figs S1 and S2 ) identifi ed that fl uorescence in 



ARTICLE   

3

NATURE COMMUNICATIONS  |    DOI:  10.1038/ncomms1411 

NATURE COMMUNICATIONS  |  2:405  |    DOI:  10.1038/ncomms1411   |  www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

the short excitation and emission range, mainly due to fl uorescent 
components 3 (tryptophan-like) and 4 (tyrosine-like), represented 
54    ±    12 %  ( N     =    9;  Supplementary Table S9 ) of the total fl uorescence 
of atmospheric WSOC and 50    ±    19 %  ( N     =    40) of the total fl uores-
cence of DOM from alpine lakes located on barren, rocky terrain 
( Fig. 3 ). In polar lakes, the combined fl uorescence of components 3 
and 4 represented only 15    ±    10 % . Fluorescence spectra of biological 
and chemical organics that may be found in the atmosphere, such 
as pollen, airborne bacteria, formaldehyde, hydrogen peroxide, 
urban aerosols and diesel exhaust, were measured ( Supplementary 
Fig. S2 ). Of the compounds examined here, the fl uorescence in the 
short excitation and emission range in our alpine lake samples most 
closely resembled fl uorescence from pollen, airborne bacteria, and 
formaldehyde ( Supplementary Fig. 23 ).

  Th e role of bacteria  .    Concomitant with aerosol and climatic con-
trols, lake bacteria also aff ect DOM properties. BA increased with 
elevation in alpine lakes ( Fig. 4a ) and also increased with proxim-
ity to the Saharan dust source. Log BA was higher in lakes with 
longer water residence time (using   δ   18 O values as a proxy for this 
parameter;  r     =    0.74,  P     =    0.004,  N     =    13). Further, signifi cant correla-
tions between log BA and log DOC concentration ( Fig. 4b ), log  a  250  
( Fig. 4c ), and log  F  total  ( Fig. 4d ) indicate important connections 
between BA and DOM optical properties in alpine lakes.    

 Discussion
 Th e latitudinal pattern in DOM optical properties observed in 
alpine lakes appears to be a function primarily of atmospheric dust 
deposition and secondarily of the fl ux of incident ultraviolet radia-
tion (multiple regression analyses in  Supplementary Tables S10 –
 S12 ). Th ese external factors may exert controls on DOM quantity 
and quality in high-elevation lakes in several non-exclusive ways. 
First, we hypothesize that dust deposition, which is highest near 
dust sources 29 , may directly supply high-molecular weight CDOM 
to remote lakes, and that the changes observed in DOM optical 
properties with decreasing latitude result from proximity to global 
dust sources, most notably the Sahara and Sahel. Indeed, long-term 
monitoring studies show that dust deposition and coarse particu-
late matter aerosols originating in North Africa comprise on aver-
age     >    10 %  organic carbon 11,12 , and represent a major fraction of the 
DOM input to a clear, alpine lake within the Saharan dustbelt 4 . Th is 
atmospheric infl uence on the DOM quality of alpine lakes is sup-
ported by the signifi cant positive relationships between AI and  S  c370  
and  S  R  and the signifi cant increase in  S  c370  and decrease in  S  R  with 
proximity to the Saharan dust source ( Fig. 2 ). Taken together with 
the association of high  S  c370  and low  S  R  with higher molecular weight, 
humic DOM 21,22 , these spatial trends indicate greater input, produc-
tion, or selective preservation of high-molecular weight, humic-like 
substances with proximity to the Sahara. Moreover, the low  S  R  values 
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   Figure 1    |         Map of study sites and global distribution of aerosols. Approximate location (white dots) of lakes (ATL    =    Atlas (2 lakes,  N     =    2); SN    =    Sierra 

Nevada (25 lakes,  N     =    25); PYR    =    Pyrenees (16 lakes,  N     =    28); ALP    =    Tyrolean Alps (17 lakes,  N     =    38); PAT    =    Patagonian Andes (6 lakes,  N     =    6); 

ANT    =    Antarctica (15 lakes,  N     =    15), ARC    =    Canadian Arctic (6 lakes,  N     =    6)) sampled in this study and contours of the annual mean aerosol index (AI) 

obtained by the NASA – KNMI Ozone Monitoring Instrument. AI values     <    0.2 removed for clarity. Monthly and annual mean weighted AI values are shown 

in  Supplementary Tables S1 and S2,  and calculations are described in the Supplementary Methods.  N     =    number of samples.  
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in alpine lakes located closer to the Sahara are consistent with low 
 S  R  values (mean of 1.86    ±    0.97,  N     =    6;  Supplementary Table S9 ) in 
WSOC from dry deposition collected within the Saharan dustbelt. 
Th ree-dimensional fl uorescence spectra of WSOC from dry depo-
sition were similar to those of DOM in clear, alpine lake samples 
and unlike those of polar lakes ( Fig. 3 ). EEMs of WSOC and DOM 
in alpine lakes contained peaks in the short excitation and emis-
sion wavelength range, which resemble those of bioaerosols, such as 
bacteria and pollen, and oxidized organic compounds in the 
atmosphere ( Supplementary Fig. S2 ), and at longer emission wave-
lengths associated with the presence of humic substances ( Fig. 3 ). 
Th erefore, dust transport may be a vector for organic constituents 
from multiple sources that may either be mobilized at the dust 
source or partition to the mineral surface during transport 11 . 

 Second, the correlations between clear-sky ultraviolet radiation 
and optical properties of alpine lake DOM may refl ect the increas-
ing importance of photochemical processes with decreasing lati-
tude. Th e increase in  S  c370  values and other  S  c λ   values between 350 
and 400   nm, representative of high-molecular weight compounds 21  
and humic substances 22 , with increasing ultraviolet radiation is 
consistent with results from CDOM photochemical experiments 22 , 
and may, more specifi cally, indicate photohumifi cation processes. 
In clear marine waters, photohumifi cation or the oxidation, con-
densation, and transformation of dissolved triglycerides and fatty 
acid compounds into humic substances by ultraviolet radiation has 
been documented 30 . In the clear alpine lakes of this study,  S  c370  also 
increased with greater   δ   18 O values ( r     =    0.57,  P     =    0.005,  N     =    21), which 
may further refl ect greater exposure to both ultraviolet radiation 
and atmospheric deposition with longer water residence. In addi-
tion to signalling longer water residence time, the increasing   δ   18 O 
values with decreasing latitude ( Fig. 2 ) may be indicative of shorter 
periods of ice cover, which imply longer atmospheric exposure in 
those lakes closer to both the equator and the Saharan dust source. 

 Optical properties of DOM in alpine lakes may also be infl u-
enced by the microbial response to dust deposition. Dust deposi-
tion supplies alpine lakes with nutrients, particularly phosphorus, 
that stimulate phytoplankton and bacterial growth 31,32 . Phytoplank-
ton exudates of organic substances and their subsequent bacte-
rial processing 32 , as well as the direct release of mycosporine-like 
amino acids 33,34  under ultraviolet stress are known to be linked to 

CDOM and fl uorescent DOM ( Supplementary Fig. S3 ) produc-
tion. Perhaps of equal importance for alpine lakes is the potential 
stimulation of bacterial growth by atmospheric deposition of DOM 
and nutrients. In our study, strong correlations between bacterial 
abundance, elevation, and   δ   18 O suggest that at high elevations, ferti-
lization by dust may be pronounced because of minimal catchment 
vegetation infl uences and relatively greater exposure to atmospheric 
deposition. Further, the signifi cant relationship between log BA and 
log DOC concentration taken together with the increase in log BA 
with increasing AI ( r     =    0.62,  P     =    0.001,  N     =    26) and increasing log 
DOC concentrations with AI ( r     =    0.40,  P     =    0.004,  N     =    62) point to 
DOM from atmospheric deposition as an energy source for bacte-
rial growth. Th e relationships between BA and absorption at 250   nm 
and at other wavelengths ( Supplementary Table S7 ) further suggest 
that bacteria are producing CDOM. Even though BA is not a sur-
rogate for bacterial activity, this parameter may provide a coarse 
indication of bacterial production in these alpine lakes. Signifi cant 
positive relationships between BA and  F  total  for alpine lakes extend 
this notion to bacterial production of fl uorescent DOM. 

 Alpine and other remote lakes have been used as reference sites 
and recent studies have emphasized their importance as sensors of 
global change 1,3 . Th ere is increasing evidence that these  “ pristine ”  
lakes are vulnerable to climatic and atmospheric infl uences. More 
than a decade ago, it was hypothesized that changes in dust deposi-
tion and climate warming will be key factors for the development of 
alpine lakes 35 . Now, we observe that dust exerts direct and indirect 
infl uences on lake DOM, with water residence time and the dura-
tion of ice cover further acting to control exposure of lakes to dust 
and its associated organic and inorganic constituents. Because the 
chemical character of DOM infl uences its bioavailability, its role in 
light attenuation in the water column, and consequently the water 
quality of alpine lakes, the observed geographic patterns in DOM 
and their relation to dust deposition are of great consequence for 
these remote systems. Beyond the importance that DOM has on lake 
ecosystems, what we observe is a strong connection between alpine 
lakes and the atmosphere that may be relevant in terms of detecting 
changes in the atmospheric cycling of organic carbon, for instance, 
or in the role of dust as a vector for the transport of nutrients and 
pollutants at a global scale. Although the polar lakes included in this 
study did not refl ect an atmospheric infl uence in their DOM optical 
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        Figure 2    |         Changes in lake characteristics and DOM properties with latitude. Latitudinal gradients of external factors, ( a ) aerosol index (AI) and ( b ) clear-sky 

ultra violet radiation (CS UV 305 ), lake characteristics, ( c ) stable isotope of oxygen (  δ   18 O), and ( d ) dissolved organic carbon (log DOC) concentration, and 

DOM optical properties, ( e ) absorption (log  a  250 ), ( f ) total fl uorescence (log  F  total ), ( g ) spectral slope curve at 370   nm ( S  c370 ), and ( h ) spectral slope ratio 

( S  R ) in alpine (black circles) and polar (red circles)   lakes. Regression lines indicate signifi cant relationships between latitude and AI ( r     =        −    0.83,  P     <    0.001; 

 N     =    115), CS UV 305  ( r     =        −    0.61,  P     <    0.001;  N     =    115),   δ   18 O ( r     =        −    0.43,  P     =    0.005;  N     =    41), log DOC ( r     =        −    0.29,  P     =    0.019;  N     =    65), log  a  250  ( r     =        −    0.33,  P     =    0.025; 

 N     =    46), log  F  total  ( r     =        −    0.38,  P     =    0.012;  N     =    43),  S  c370  ( r     =        −    0.76,  P     <    0.001;  N     =    49), and  S  R  ( r     =    0.51,  P     <    0.001;  N     =    45).  N     =    number of samples. North and 

South latitudes are pooled and samples collected at depths     >    2   m were excluded.   
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properties due to their position at low elevations and outside the 
extent of the dustbelt, these systems are also particularly vulnerable 
to climatic changes, which are expected to be relatively large at high 
latitudes 36 . Our new evidence that alpine lake bacteria may be both 
infl uenced by the organic carbon in dust deposition and may infl uence 
alpine lake optical properties by producing chromophoric organic 
compounds ultimately has major implications for carbon cycling. 
Th e higher bacterial abundance at higher elevations and presum-
ably under more extreme environmental conditions (for example, 
ultraviolet radiation) is an unexpected result that merits further 
study, particularly in the context of microbial food-web dynamics 
in alpine lakes. Rising temperatures in the future are likely to steer 
remote lake microbial dynamics toward greater productivity 36,37 , 
whereas land use change and other disturbances that exacerbate the 
mobilization and transport of dust 38,39  and its associated organic and 
inorganic constituents will have additional consequences for alpine 
lake trophic dynamics.   

 Methods 
  Sample collection and DOM characterization measurements  .   Water samples 
were collected from alpine and polar lakes ( Supplementary Table S1 ) and fi ltered 
with pre-combusted glass fi bre fi lters (GF / F). Atmospheric dry deposition samples 
were collected using an automatic wet / dry deposition collector located at 2,896   m 
a.s.l. at the Sierra Nevada Observatory, a site of frequent Saharan dust intrusions. 
Water-soluble organic carbon was extracted from dry deposition using ultra-pure 
water and fi ltered through pre-combusted GF / F fi lters. DOC concentrations were 
measured on GF / F fi ltered, acidifi ed samples with Shimadzu TOC analysers. 

Ultraviolet-visible absorbance was measured on GF / F fi ltered, unacidifi ed samples using 
a Perkin Elmer Lambda 40 and Beckman DU-640 ultraviolet-visible spectropho-
tometers. Th e Naperian absorption coeffi  cient and spectral slope ratio were calculated 
according to ref.   21 and spectral slope curves were calculated as described in ref.   22 
with 20   nm off sets ( Supplementary Fig. S4 ). Fluorescence scans used in PARAFAC 
modelling were measured on GF / F fi ltered, unacidifi ed samples using a JY Horiba 
Fluoromax-4 spectrofl uorometer with instrument-specifi c corrections applied dur-
ing spectral acquisition. Excitation – emission matrices were normalized to the area 
under the Raman curve, inner fi lter corrected, and blank subtracted. For PARAFAC 
modelling 25  ( Supplementary Fig. S5  and  Supplementary Table S13 ) and generation 
of measured, modelled, and residual EEMs ( Supplementary Fig. S6 ), the areas of 
Rayleigh scatter were excised and outliers were removed from the model.   
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     Figure 3    |         Similarities in fl uorescence spectra of atmospheric deposition 
and alpine lake DOM. Representative EEMs of water soluble organic carbon 

from dry deposition (Deposition) collected at the Sierra Nevada Observatory 

on 8 July 2008, DOM from lakes on rocky catchments of the Atlas (ATL: 

Lac D ’ Ifni), Sierra Nevada (SN: Cuadrada), Patagonia (PAT: Tempanos), the 

Pyrenees (PYR: Ibonet Perram ó ), and the Alps (ALP: Faselfad 4) show well-

resolved fl uorescence peaks at short excitation and emission wavelengths. For 

comparison, DOM from low-elevation lakes on partially vegetated catchments 

in Antarctica (ANT: Somero) and the Arctic (ARC: Bylot 40) are shown. 

Arrows point to low excitation / emission (amino-acid-like) (white), humic-

acid-like (yellow), and fulvic-acid-like (green) peaks according to ref.   24  .  
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     Figure 4    |         Bacterial abundance trends and infl uence on DOM production. 
Scatterplots showing signifi cant relationships between bacterial 

abundance (log BA) and ( a ) elevation ( r     =    0.72,  P     <    0.001,  N     =    26), ( b ) 

DOC concentration (log DOC) ( r     =    0.74,  P     <    0.0001,  N     =    26), ( c ) absorption 

(log  a  250 ) ( r     =    0.49,  P     <    0.017,  N     =    23), and ( d ) total fl uorescence (log  F  total ) 

( r     =    0.55,  P     =    0.01,  N     =    21) in alpine lakes.  N     =    number of samples. Samples 

collected at depths     >    2   m were excluded  .  
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  Other parameters  .   Samples were analysed for oxygen isotopic composition using 
the CO 2  – H 2 O equilibration method. Chlorophyll  a  concentrations were obtained 
by measuring absorbance of acetone-extracted GF / F fi lters or by high-pressure 
liquid chromatography on methanol-extracted GF / F fi lters. Bacterial abundance 
was measured either by fl ow cytometry or epifl uorescence microscopy with DAPI 
staining. Th e percentage of vegetation cover in lake catchments was estimated 
from photographic surveys. Th e clear-sky ultraviolet radiation and aerosol index 
data were obtained from observations by the NASA – KNMI (Netherlands Royal 
Meteorological Institute) Ozone Monitoring Instrument. More detailed methods 
are provided in the online  Supplementary Information .                 
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