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Abstract: Post-fire salvage logging (SL) is a common management action that involves the harvesting
of burnt trees. As a consequence, a large amount of biological legacies in the form of logs and other
coarse woody debris are removed from the post-fire habitat, creating a more simplified landscape.
Therefore, SL could act as an additional disturbance over that produced by fire. In this study, we seek
to determine the effect of SL on the regeneration of the bryophyte community of a laurel forest
from the Canary Islands (Spain). We hypothesized that SL will act as an additional disturbance and,
consequently, salvaged areas will have a higher difference in community composition with respect
to a reference ecosystem (RE). Mosses and liverworts were sampled 22 months after the salvage
operations in salvaged plots, non-salvaged, and in an RE represented by areas of the original forest.
Species richness did not differ between salvage and non-salvaged treatments. However, multivariate
analysis and species-indicator analysis showed that non-salvaged plots had a composition closer to
that of the RE, with a higher proportion of closed-canopy, perennial, and long-lived species, as well
as some epiphytes. By contrast, salvaged plots were dominated by early-successional terrestrial
species and species preferring open habitats. We conclude that post-fire SL represents an additional
disturbance that further delays succession, a result that is consistent with previous studies using
other taxonomic groups. SL should therefore be avoided or, if implemented, the possibility of leaving
part of the post-fire biological legacies in situ should be considered.

Keywords: Canary islands; life strategy; perennials; colonists; post-fire management; conservation;
Moss; liverwort

1. Introduction

A disturbance can be defined as any event, natural or human driven, that causes temporary and
localized shifts in demographic rates [1]. Fire is one of the most common and intense disturbances in
terrestrial ecosystems [2], and leaves a simplified landscape where a great part of the biomass is lost to
the atmosphere. However, after the fire, a large amount of biomass remains in the form of burnt logs,
snags, and, in general, coarse woody debris (CWD). This represents a biological legacy with a critical
role for the structure and functioning of the post-fire habitat [3–5], and with the potential to influence
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post-disturbance successional trajectories. In this sense, burnt logs, whether standing or felled,
generate a vertical habitat structure that may promote secondary succession and accelerate ecosystem
regeneration by promoting animal interactions such as seed dispersal [3,6], creating microhabitats that
improve seedling recruitment [7–9], providing nutrients that increase primary production [10] and,
overall, boosting ecosystem functioning [11]. In short, the role of snags and other CWD as biological
legacies that promote biodiversity, regeneration, and ecosystem functioning has been increasingly
demonstrated by studies performed mostly in the last couple of decades. These studies overall provide
evidence for the need of retaining part of these structures as key elements for habitat restoration and
biodiversity conservation [3,12–16].

After a fire, it is common, however, to conduct salvage logging (SL hereafter), i.e., the harvesting
of trees and other biological material from the burnt area [17–19]. The reasons for conducting SL
are diverse, but are largely related either to the recovery of economic capital still available in the
remaining wood soon after the disturbance, or to facilitate future restoration or reforestation [19,20].
Nonetheless, this management action has been sharply criticized in the last two decades, and a
growing number of studies have showed that salvage logging may seriously compromise ecosystem
regeneration [3–15,21,22]. It is becoming increasingly clear that the negative effect of SL is related to
its impact on habitat structure and components, which is linked primarily to the amount of biomass
removed and the simplification of habitat structure [9,10,12,23]. In this sense, post-fire salvage logging
should be regarded as a disturbance that is superimposed over the previous forest disturbance. Despite
this situation, the study of the effect of SL in the context of compounded disturbances is scarce and
recent (e.g., [24–27]). This is probably because it is a human-conducted action, often planned with
the idea of restoring forests, and hence is perceived free of the negative connotations that typical
disturbances often have for forest management. Knowledge of the effect of multiple interacting
disturbances is in fact a critical gap in the development of ecological theory [17,24,25,28,29], and the
study of the impact of (post-fire) salvage logging on ecological succession may greatly contribute to the
understanding of the effect of compound perturbations on ecosystem functioning and structure [30].

The evaluation of the pace and speed of succession after disturbances, either achieved from
natural processes or assisted through restoration activities, will benefit from the existence of a reference
ecosystem that serves as a template to compare the values of the indicators used in the study [31–33].
This reference ecosystem is often based on climax communities that are usually well known for
a specific site [34]. However, most studies addressing the effect of salvage logging on ecosystem
regeneration have focused on the comparison between salvaged and non-salvaged areas, but without
exploring the results with respect to a non-disturbed reference ecosystem (see [30,35,36]). Although
this approach provides crucial and invaluable information concerning the effect of SL on ecosystem
regeneration and functioning, the use of a reference ecosystem may place the effect of SL within the
context of succession, helping to evaluate with more accuracy its long-term effect and the difference
with respect to the mature communities.

In this work, we seek to determine the impact of post-fire SL on the regeneration of bryophyte
communities of a Macaronesian laurel forest. For this purpose, we analyzed the bryophyte community
composition 22 months after salvage operations were conducted. Bryophytes are a taxonomic group
with a high value as bio-indicators [37]. They are fast-colonizing species and present life forms
specialized in contrasting post-disturbance habitat types such as soil, rocks, or as epiphytes [38], which
altogether provide a model system to test the effect of salvage logging as a disturbance superimposed
over that caused by fire. To assess the effect of SL, we also used a reference ecosystem that consisted of
areas of the same forest that did not burnt and that were adjacent to the burnt area. This provided
information not only on the species assemblages, but also on relevant aspects for conservation strategies
aimed at promoting and preserving ecosystem functioning. Given that SL implies the removal of the
CWD, and hence of a large part of the forest structure and biomass, we expect that the bryophyte
community in SL areas will be dominated, at least in the short term, more by early-successional
species characteristic of open habitats than in non-salvaged areas Similarly, given that SL implies the
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removal of a particular substrate and its vertical structure, we expect that SL areas will especially
harm those functional groups most dependent on specific microhabitat conditions altered by salvage
logging, such as epiphytes and species with the longest life spans. The two previous considerations
will cause the species assemblages in non-salvage areas to be closer to the reference community than
the species assemblage of the salvaged areas. Overall, we hypothesize that post-fire SL will act as a new
disturbance that delays succession of the bryophyte community. By answering these questions, we seek
to establish a more accurate evaluation of the impact of SL on the regeneration of plant communities.

2. Materials and Methods

2.1. Study Area

The study area is located in the northeast of La Gomera (Canary Islands; 28◦06′ N 15◦24′ O), where
a human-caused wildfire took place in April 2008. Fires on the Canary Islands occur mostly in pine
forests, being mature laurel forests not particularly fire prone [39]. Most of them have an anthropic
origin (whether by negligence or provoked), representing natural fires only a 0.8% [40]. In April 2008,
a total of 511 ha were severely affected by a fire from 200 to 890 m above sea level (m a.s.l. hereafter),
encompassing banana plantations and abandoned agricultural areas on the lowlands, and the laurel
forest areas situated above 750 m a.s.l., being those forest areas where plots were established. Fifteen
months after the fire, the local Forest Service created a matrix of plots where post-fire salvage logging was
conducted, intermingled with plots without salvage logging. This provided the opportunity to set up an
experiment with two levels of post-fire wood management (treatments hereafter), being: (1) Salvaged
logging (SL), where all trees were manually cut and removed, and most of the coarse woody debris
was removed also manually and left near the roads; and (2) Non-salvaged (NS), where no post-fire
action was undertaken. In addition, we considered a third treatment; (3) Reference ecosystem, covering
areas of nearby forests that were not burnt. The reference ecosystem was composed by a dense, native
50-year-old forest dominated by Erica arborea, Morella faya and Ilex canariensis [41], with a dominant tree
height of circa. 12 m (Table 1). The bioclimatic belt of the area corresponds to subhumid pluviseasonal
lower-mesomediterranean, influenced by trade-wind clouds [42]. The mean annual temperature is
13.7 ◦C, mean minimum of the coldest month is 5.8 ◦C, mean maximum of the coldest month 13.2 ◦C,
and the annual rainfall is 683 mm (period 1960–2002; climatic data from the “Agulo-Meriga Vivero”
meteorological station, placed at circa. 2 km from the study site at 840 m a.s.l. [42]).

For the two post-fire management treatments, we established nine 10 × 10 m plots (experimental
plots, hereafter), while for the reference ecosystem three plots were established. The field work took
place from May to July 2011 (thus, 37 months after the fire and 22 months after the SL operations;
Figure 1). The plots did not differ among treatments in slope or aspect, and differences in altitude,
although significant, were only 46 m (Table 1).
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Table 1. Main habitat characteristics in the study plots measured 37 months after the fire (and 22
months after treatment implementation). Values are mean ± SE. p-values calculated after an Analysis
of Variance (ANOVA). Bold indicates significant differences among the three treatments. Comparisons
among SL and NS alone renders non-significant differences for all the variables except for canopy
cover (p-value = 0.012). (*) Measured at the center of each plot. (**) Number of all trees in the plots
(living trees in reference ecosystem (RE); burned standing logs in Non-salvaged (NS); tree stumps in
salvage logging (SL)). Although measured after the management, it is considered a parameter prior to
the fire as it counts number of trees before the disturbance. (***) Maximum height of the new resprouts
produced after fire for each of the dominant three species in the area (Erica aborea, Ilex canariensis, and
Morella faya). (†) The height of the resprouts was not estimated in the reference ecosystem (where
individuals were mostly adult trees); the mean height of the trees in this treatment was circa. 12 m.
The stand that was not burnt was taken as the reference ecosystem in this study, and it was a 50 years
old laurel forest that regenerated abundantly after abandonment of agricultural lands.

Variable Salvage Logged Non-Salvaged Reference Ecosystem p-Value

(SL) (NS) (RE)

Environmental features
Elevation (m a.s.l.) * 811.9 ± 7.7 799.9 ± 3.4 846.66 ± 21.07 0.013

Slope (◦) * 23.77 ± 3.78 28.88 ± 3.61 29.0 ± 7.9 0.586
Number of individuals ** 118.66 ± 24.21 102.44 ± 9.45 117.67 ± 27.88 0.803

Aspect (degrees) * 120.44 ± 53.8 117.88 ± 52.3 104.33 ± 18.92 0.890

Post-management stand features
Canopy cover 58.33 ± 7.81 84.77 ± 4.99 96.33 ± 1.33 0.006

Litter layer (cover %) 27.88 ± 8.97 53.88 ± 11.63 80.00 ± 5.77 0.037
Depth of the litter layer (cm) 1.79 ± 0.38 2.64 ± 0.62 3.3 ± 0.52 0.278

Height of the resprouted
vegetation (m) *** 3.08 ± 0.13 3.98 ± 0.20 † 0.016

Bare Soil (%) 21.11 ± 4.98 9.44 ± 3.64 11.67 ± 6.01 0.169
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Figure 1. Location of the study area and experimental design.

2.2. Post-Management Habitat Characteristics

Post-management habitat characteristics potentially relevant for bryophyte regeneration were
sampled in all the plots on May–July 2011. The percentage of herbaceous and shrub species cover
was visually estimated in each plot using partial estimations in quadrats of 1 m2 [43]. Tree cover (mostly
formed by resprouts in the case of SL and NS) was obtained measuring two perpendicular diameters
of the canopy of each individual resprouts or tree. Maximum height of the plant cover was estimated
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in SL and NS plots by measuring the height of the five largest resprouts in three randomly chosen trees
(snags in case of NS; stumps in case of SL) of the three main species of these forests, being Erica aborea,
Ilex canariensis and Morella faya (thus, nine individuals and 45 resprouts per plot). Percent cover and depth
of the litter layer was calculated from ten random measurements taken along the diagonal of each plot.

2.3. Community Composition

The composition of bryophyte communities was sampled independently for epiphyte, saxicolous,
and terricolous species. For sampling epiphyte bryophytes, three trees with basal diameters ≥ 25 cm
of the three dominant species present in the area (Erica arborea, Morella faya and Ilex canariensis) were
randomly assigned in each plot. For each of the selected trees, one 1000 cm2 quadrat (10 cm × 1 m)
was established in the area of maximum bryophyte cover in the first 2 m sections of each trunk,
recording cover of epiphyte bryophytes. This sampling was done in NS and RE treatments, as in
the salvaged plots no structures were available to support epiphytes. For saxicolous bryophytes,
three rocks were randomly selected in each plot, and a 30 × 30 cm quadrat was established in the
area of maximum bryophyte diversity. Terricolous communities were sampled in three equidistant
quadrats of 1 × 1 m on the diagonal of each plot. In each quadrat, the percentage of cover by each
bryophyte species detected was visually estimated. Additional 1 × 1 m plots were made in the soil
at the base of nine trees (or stumps in the case of SL) and the percentage cover of each bryophyte
species was also estimated for them. A sample of all the recorded species was collected for later species
confirmation in the laboratory and specimens were preserved in the herbarium TFC-Bry of La Laguna
University. All species were classified according to their functional groups following the literature [44]
and author expertise. Furthermore, species were also classified based on canopy preference (species
developing preferably under conditions of open canopy, closed canopy, or generalists species) and
substrate preference (terricolous, saxicolous, epiphytic, or substrate generalists). See Table 2 for a
detailed classification of functional groups.

Table 2. Bryophyte functional groups classification used in the study.

Functional Group Categories

Taxonomic
Liverworts

Mosses

Canopy preference
Open canopy

Canopy generalists
Closed Canopy

Life strategy

Fugitives
Colonists

Short-lived shuttles
Long-lived shuttles

Perennials

Substrate preference

Epiphytes
Substrate generalists

Saxicolous
Terricolous

2.4. Data Analysis

Differences among treatments in habitat characteristics were analyzed with a One-way Analysis of
Variance (ANOVA). Species richness and abundance (percent cover) were analyzed using generalized
least-squares model (GLS). Variables were first square-root transformed, and then we modeled spatial
correlation. The following models were developed: (1) Model with no spatial control; (2) Model
considering a spherical spatial correlation structure; (3) considering exponential spatial correlation
structure; (4) Model considering a Gaussian spatial correlation structure; (5) Model representing a
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linear spatial correlation structure; (6) Model including ‘x’ and ‘y’ coordinates directly in the model and
(7) a Spatial Autorregresive Model (SAR). All these models were further compared between each other
using AIC, the best model being the one with the lowest AIC. For species richness, the best model was
the GLS without spatial control, and for species abundance, the best model was the one including ‘x’
and ‘y’ coordinates directly on the model. GLS also gave better results than did SAR in accounting for
spatial autocorrelation by Beguería and Pueyo [45]. All analyses described above were performed using
the packages “sp.” [46], “car” [47], “nlme” [48], “spdep” [49] and “MuMIn” [50] using R programming
environment version 3.1.2. (R Development Core Team) [51]. Total species richness was further analyzed
for the estimated number of species after rarefaction using EstimateS 9.1.0 [52].

Changes in community composition were examined using two complementary approaches: the
first one including species-indicator analysis and a Similarity Percentages (SIMPER) analysis, and a
second one including multivariate analysis. First, the species-indicator analysis was run to test the effect
of treatment on individual species using the R package “Indicspecies”. The package was written by
De Cáceres & Legendre [53] as a refinement of the IndVal method originally developed by Dufrêne
& Legendre [54]. The algorithm determines both fidelity (restriction to a site or group of sites) and
consistency (consistent species occurrence among sites within site groups), providing a statistic (IndVal)
and an associated p-value. Only species significant at the p < 0.05 level were selected as indicator species.
In addition, SIMPER analysis was carried out, using CAP software [55], in order to increase information
on species defining each one of the treatments considered. Second, multivariate analyses were conducted
to test the differences in community composition among treatments. A Permutational analysis of variance
(PERMANOVA) was first conducted to assess changes in bryophyte communities as a response to
treatments [56]. Bray-Curtis dissimilarity was used to obtain resemblance matrices after square-root
transformed matrix using 4999 permutations. A two-way design was performed in which factors were
“Treatment” (fixed with 3 levels: Salvage logged, Non-salvaged, and Reference ecosystem) and “plot” as a
random factor nested in “treatment” using PRIMER-E v6 + Permanova v.6.1.6 [57]. Thereafter, a Detrented
Correspondence Analysis (DCA) was conducted in order to evaluate the variation in species composition,
unconstrained by the particular variable measured. We also applied a Canonical Correspondence Analysis
(CCA), together with a Monte Carlo test to relate species composition to the variables measured. These
two ordination methods are complementary, and the CCA eigenvalues can be compared with the DCA
eigenvalues for an indication of the proportion of the total observed variation explained by the particular
combination of variables in a CCA (e.g., [58–60]). Correlation coefficients of the variables in the plots with
the sample ordination scores were calculated. Both analyses used CANOCO v 4.5 [61].

3. Results

3.1. Post-Management Habitat Characteristics

Canopy cover, litter layer, and height of the resprouted vegetation differed sharply among
treatments, and in all cases showed an increase from SL to RE (Table 1). The depth of the litter layer
did not differ across treatments, but similarly showed a trend that increased from SL to RE (Table 1).
Finally, the height of the resprouted vegetation was higher in NS than in SL treatments (Table 1).

3.2. Community Composition

A total of 36 species of bryophytes were recorded in the study plots (Appendix A). Species density
(number of species per area) differed significantly among RE (with the highest species number) and
the other two treatments (Figure 2A), although no significant differences in the number of species was
found among SL and NS. Abundance was also the highest in RE, followed by SL and NS (Figure 2B).
The number of species obtained after rarefaction also showed maximum values for the RE treatment,
but indicated that the proportion of species recorded was the highest in SL (94%), followed by NS
(73%) and RE (64%; Appendix B). This supports that our sampling was particularly underestimating
the real number of species in NS and RE treatments.
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Figure 2. Box plots of species richness (A) and abundance (% cover) (B) of bryophytes on the three
transects. Different superscript letter denote significant differences after post hoc comparisons (p < 0.001).

The Indicator Species Analysis performed with “indicspecies” showed three indicator species for
SL plots: Ptychostomum imbricatulum (Indicspecies statistic = 0.963, p-value = 0.0001), Didymodon vinealis
(0.821, p-value = 0.05), and Funaria hygrometrica (0.779, p-value = 0.05). By contrast, no indicator
species were found for NS plots. SIMPER analysis provided additional information on the species
that contributes more to similarities within plots of each treatment (Table 3). Results of SIMPER for
SL plots agree with those found with the Indicator Species Analysis, revealing again P. imbricatulum,
D. vinealis and F. hygrometrica as the species accounting for most of the similarity of the plots, together
with Ceratodon purpureus. Among the species representative of RE are Frullania teneriffae, F. tamarisci,
Porella canariensis (liverworts), and Hypnum uncinulatum and Plasteurhynchium meridionale (mosses),
which are mostly epiphytes. For NS plots, the results show a species list similar to that found for SL
plots, with terrestrial and colonists species such as C. purpureus, C. pilifer, or P. imbricatulum, although
we can find that some perennial epiphytes appear, such as Hypnum cupressiforme.

Table 3. Results of SIMPER (similarity percentage) analysis showing taxa that accounted the most to
the similarities within plots of each transect.

Species % Contribution Cumulative %

RE

Frultene 22.24 22.24
Isotmyos 20.70 42.94
Frulltama 17.19 60.03
Porecana 9.84 69.87
Hypnunci 7.59 77.47
Fissbryo 5.70 83.16

Semasubs 5.23 88.40
Plastmeri 3.80 92.19

NS

Cerapurp 22.54 22.54
Camppili 19.40 42.00
Hypncupr 13.16 55.15
Ptyccapi 12.70 67.85
Ptycimbr 9.10 76.95
Didyvine 9.03 85.98
Didyinsu 6.84 92.82

SL

Ptycimbr 60.72 60.72
Didyvine 16.14 76.86
Cerapurp 10.91 87.77
Funahygr 5.51 93.28
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The PERMANOVA analysis showed significant influence of the treatments on bryophyte
communities (PERMANOVA: Pseudo-F = 4.8017, p = 0.0002). A DCA ordination diagram (Figure 3)
of bryophyte species composition also showed clear differences between SL and NS treatments.
The first axis of the DCA ordination for samples and species (Figure 3) showed a wider gradient
of the NS plots compared to SL and RE plots. Species located on the left side of the graph such as
Homalothecium mandonii, Leptodon longisetus and Plagiochila punctata are characteristic of mature forests
with perennial species, epiphytes, and species preferring closed canopy habitats, while colonists species
that are common in open areas and terricolous species such as Ceratodon purpureus, Bryum argenteum
or Didymodon insulanus appear in the middle and on the right part of the graph, corresponding to SL
plots (Figure 3). This is further supported by a DCA using functional-group classifications according
to canopy preference, life strategy, or substrate preference (Figure 4): species typical of open habitats,
with a colonist life strategy, and terricolous were clearly in the right part of the first axis, whereas
species characteristic of closed canopies, with a perennial habitat or short-lived shuttles, and epiphytes
were towards the left side of the axis (Figure 4).

The results of the Monte Carlo test in a CCA analysis (Figure 5), and the correlations performed
with the sample scores in the DCA analysis, showed that the five most influential variables explaining
community composition were canopy height, canopy cover, elevation, slope, and percentage of
litter layer.
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4. Discussion

Our results show that, as expected, the bryophyte community was heavily affected by the fire
in terms of composition, as well as species richness and abundance, which were clearly reduced
relative to the reference ecosystem. The reference ecosystem, despite being relatively young (50 years
old), showed a species composition that included, although with low cover, some characteristics
taxa of mature laurel forests, with Macaronesian endemic species such as Leptodon longisetus or
Homalothecium mandonii [43,62]. On the contrary, in burnt plots, fire specialist species such as Funaria
hygrometrica and Ceratodon purpureus (SL plots), and colonist species such as Campylopus pilifer,
Ptychostomum capillare, and Trichostomum brachydontium (NS plots) were dominant. These species
are known to occur in disturbed microhabitats during the early stages of post-fire succession [63,64].
However, more importantly, the results show that differences with respect to the reference ecosystem
were larger for the salvage logged than for the non-salvaged treatment in terms of community
composition, despite that these two treatments did not differ in species richness.

The functional composition of the bryophyte community further supported this trend from
salvage logging to the reference ecosystem: overall, the proportion of species with colonist life strategy,
represented mostly by terricolous species, decreased from 75% in SL to 66% in NS, and 27% in RE.
In addition, a larger difference from the reference ecosystem for the salvage logged treatment was
confirmed by indicator species analysis and SIMPER analysis, showing that colonist species dominate
on SL plots, while in RE plots perennials and long-lived bryophytes are the most representative.
For NS plots, colonist species are more abundant, but some species of RE are also present. Especially
interesting is the change in the abundance of F. hygrometrica, between SL and NS plots. The high
cover of this fire specialist and open canopy species drastically decreases on NS plots, as canopy
closure increases due to logs and resprouts of standing trees. Other taxa such as Frullania tamarisci and
Hypnum cupressiforme (characteristic epiphyte species in young laurel forests [43] that were found in the
NS plots, occurring exclusively on burnt trunks) also indicate that plots of the NS treatment were in a
more advanced stage of the succession than those that were logged—a fact that has been demonstrated
also for other bryophyte species after disturbances in other forests types [65,66]. All in all, this indicates
the need to evaluate the community composition and functional diversity as surrogates of ecosystem
regeneration after disturbances, as the species assemblages provides better information to evaluate
the differences with regard to mature communities than species abundance or number of individuals.
In fact, many characteristics species of young or disturbed forests remains vestigial in old-growth
forests, depending on small natural gaps, according with their different habitat requirements [67–69].

Differences in species composition across treatments were likely determined by the presence of
burnt logs. In this sense, epiphytic species such as F. tamarisci and H. cupressiforme were absent in the
logged plots. Old growth trees, even if burnt, offer a special type of microhabitat that does not exist on
the trunks of younger trees, as has been evidenced by other groups of organisms as invertebrates [70].
Furthermore, Bradbury [63] found that epiphyte bryophytes may be particularly vulnerable to post-fire
salvage logging. The presence of dead wood (standing dead trunks or branches in the soil) when no
salvage logging is applied can increase habitat heterogeneity [12,71], which may also lead to survival
or facilitate colonization of bryophyte species. In summary, burnt logs acted as biological legacies that
shaped the physical structure of habitats and, hence, species assemblages.

Changes in species assemblage related to post-fire salvage logging has also been observed in other
forests types and for other groups of organisms, for example, in birds [2,20,21,72,73], mammals [74],
vascular plants [75,76], gastropods [77], and insects [35,78] (see also [13] for a recent review). Overall,
a main driver of the changes in species composition is the removal of the logs (salvage logging) through
the effect that this has upon resources or habitat and microhabitat characteristics [4,13,14,20,79–81].
Moreover, post-fire salvage logging promotes community assemblages characteristic of open habitats
across other different taxonomic groups, whereas the presence of logs promote communities closer
to those of mature forests (e.g., [20,73,76,78,82]). Our results support this contention, and in addition,
provide empirical evidence for the difference with respect to the mature communities through the use a
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reference ecosystem. In summary, this study shows that post-fire salvage logging affects the succession
of the bryophyte community, with a marked loss of perennial and long-lived species, indicating that
these are the most sensitive groups for the recovery of the characteristic bryoflora of old forests.

5. Conclusions

Our results show that, as hypothesized, post-fire salvage logging represents a second disturbance
after the fire that delays succession—a fact that has been commonly pointed out, but rarely analyzed
experimentally, especially using bryophytes (see [63]). These results highlight the negative impacts
of post-fire salvage logging in the laurel forest, where no data addressing this topic are available
to date, and provide new insights into the reasons underlying the impact of salvage logging on
plant-community regeneration in a successional context. Post-fire SL should therefore be avoided if the
aim is to recover the original bryophyte vegetation of laurel forests or, if implemented, the possibility
of leaving part of the post-fire biological legacies in situ should be considered.
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Appendix A. Frequency (in Percent Cover) of Bryophyte Species Recorded in the Study Site

Life strategies are indicated after the species name between brackets; (C) Colonist, (P) Perennial,
(L) Long lived shuttle, (S) Short lived shuttle and (F) Fugitive. First column indicates shortened names
used in the figures.

Table A1. Frequency of species recorded in the study.

Species code Species name SL NS RE

Bryuarge Bryum argenteum (C) 8.9
Camppili Campilopus pilifer (C) 3.8 16.1 5.0
Cephdiva Cephaloziella divaricata (L) 2.6 12.6
Cerapurp Ceratodon purpureus (C) 25.5 25.6
Chilprof Chiloscyphus profundus (L) 27.5
Dicrscot Dicranum scottianum (L) 5.0
Didyinsu Didymodon insulanus (C) 15.7 15.0
Didyvine Didymodon vinealis (C) 18.5 26.7
Fissbryo Fissidens bryoides (C) 26.0
Frulmicr Frullania microphylla (L) 20.0
Frultama Frullania tamarisci (L) 2.1 47.8
Frultene Frullania teneriffae (L) 39.5
Funahygr Funaria hygrometrica (F) 23.7 6.7
Gongeric Gongylanthus ericetorum (L) 3.0 12.0 52.5
Homamand Homalothecium mandonii (P) 25.0
Hypncupr Hypnum cupressiforme (P) 37.0 45.7
Hypnunci Hypnum uncinulatum (P) 48.3
Isotmyos Isothecium myosuroides (P) 40.0
Lejelama Lejeunea lamacerina (S) 50.0
Leptlong Leptodon longisetus (P) 1.0
Micrulic Microlejeunea ulicina (S) 16.5
Plagrupe Plagiochasma rupestre (S) 5.0 .
Plagpunc Plagiochilla punctata (P) 20.0
Plasmeri Plasteurhynchium meridionale (P) 16.7
Polyjuni Polytrichum juniperinum (C) 15.0 .
Porecana Porella canariensis (L) 31.7
Ptergrac Pterigonium gracille (P) 10.1
Ptyccapi Ptychostomum capillare (C) 33.3 16.7 0.1
Ptycimbr Ptychostomum imbricatulum (C) 23.2 23.8 2.0
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Table A1. Cont.

Species code Species name SL NS RE

Radulind Radula lindenbergiana (S) 20.0
Rhynconf Rhynchostegium confertum (P) 20.0
Scapcomp Scapania compacta (L) 6.5
Scletour Scleropodium touretii (P) 60.0
Semasubs Sematophyllum substrumulosum (P) 9.4
Tortniti Tortella nitida (C) 16.0 1.0 14.4
Tricbrac Trichostomum brachydontium (C) 15.7

Appendix B. Estimated Species Number after Rarefaction

1. Species richness estimated by the Chao1 richness estimator for the three treatments. Plotted
values for Chao1 are means of 1000 randomizations of sample order. Rarefaction was done on the
number of samples along all the plots of each type of treatment (smallest number of bryophyte
sampling plots = 31). Analysis were performed using the software EstimateS 9.1.0 (Colwell, R.K.
EstimateS 9.1. Statistical estimation of species richness and shared species from samples. 2013).

2. To assess the completeness of the inventory method we used species accumulation curves fitted
to the Clench model, which assumes that the probability of adding species to the list decreases with the
number of species already recorded but increases over time. To assess inventory quality, we calculated
the value of the slope at the end of the curve by using the parameters given by the function, and if the
slope was smaller than 0.1 it means that our inventory was reliable. Then we calculated the proportion
of species found as an additional measurement of effectiveness.
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Figure A1. Estimated species richness.

Table A2. Species accumulation models.

Clench Model. Sn = a × n/(1 + b × n)

Treatment a b slope %species r2

Salvage logging 1.59 0.125 0.0002 94 0.98
Non salvaged 1.88 0.092 0.001 73 0.99

Reference ecosystem 2.20 0.049 0.001 64 0.99

Parameters and predictions of the species accumulation models fitted for each treatment, where a is the slope at
the beginning of the sampling, b is a parameter related to the shape of the accumulation of new species during the
sampling, n is the number of sampling plots, slope is the slope of the obtained curve calculated as a/(1 + b × n)2,
%species is the proportion of individuals recorded, calculated as Sobs/(a/b), and r2 is the coefficient of determination.
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