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Abstract. Understanding the impacts of combined resource supplies on seedlings is critical to enable prediction of
establishment growth, and forest dynamics. We investigated the effects of irradiance and water treatments on absolute
growth, and relative growth rate (RGR) and its components, for seedlings of fourQuercus species differing in leaf habit and
with a wide variation in seedmass. Plants were grown for 6.5months at three levels of irradiance (100, 27, and 3%daylight),
and treated during the last 2.5 months with two watering treatments (frequent watering v. suspended watering). Both shade
and drought reduced seedling growth rates, with a significant interaction: under full irradiance the drought treatment had a
stronger impact on RGR and final biomass than under deep shade. For three species, seed mass was positively related to
absolute growth,with stronger correlations at lower irradiance. The evergreen species grew faster than the deciduous species,
though leaf habit accounted for a minor part of the interspecific variation in absolute growth. Seedling biomass was
determinedpositively either byRGRor seedmass;RGRwaspositively linkedwith net assimilation rate (NAR) and leafmass
fraction (LMF), and seed mass was negatively linked with RGR and LMF, but positively linked with NAR. Seedling RGR
was not correlated with light-saturated net photosynthetic rate, but was strongly correlated with the net carbon balance
estimated, from photosynthetic light-response curves, considering daily variation in irradiance. These findings suggest an
approach to applying short-term physiological measurements to predict the RGR and absolute growth rate of seedlings in a
wide range of combinations of irradiance and water supplies.

Additional keywords: biomass allocation, carbon balance, growth analysis, leaf habit,Mediterranean oak, relative growth
rate, seed mass, specific leaf area.

Introduction

Seedlings’ rates of growth and survival are strongly determined
by irradiance (e.g. Poorter 2001; Montgomery 2004; Sánchez-
Gómez et al. 2006), and water availability (Grant et al. 2005;
Matthes and Larson 2006; Engelbrecht et al. 2007). Recently,
there has been strong interest in the combined effects of irradiance
and water on plant performance across scales, from leaves
(Aranda et al. 2005; Quero et al. 2006), to plants (Sack and
Grubb 2002; Sack 2004; Sánchez-Gómez et al. 2006), to
communities (Zavala and de la Parra 2005). This
understanding is critical as droughts are occurring with
increasing severity (Piñol et al. 1998; De Luís et al. 2001;
Peñuelas et al. 2002); climate change scenarios predict a 20%
decrease in rainfall in Mediterranean areas in the next century
(IPCC 2007). Irradiance and water supplies may vary strongly

even at the meter or centimetre scale (Maestre et al. 2003; Quero
2006), driving coexistence of different species (Montgomery and
Chazdon 2002; Valladares 2003; Sack 2004). Indeed, in different
natural systems, irradiance and water supplies may vary
independently, or they may be correlated positively or
negatively (e.g. Abrams and Mostoller 1995; Valladares and
Pearcy 2002; Niinemets and Valladares 2006). Given this
complexity, we need to understand how plant responses to
drought can vary across irradiances. Some authors have
hypothesised that the impact of drought should be stronger in
deeper shade (Smith and Huston 1989; Aranda et al. 2005).
However, studies have shown that for leaf-level physiology
and for absolute plant growth and survival, the impact of
drought is typically reduced in shade (e.g. Canham et al. 1996;
Holmgren 2000; Sack andGrubb 2002; Sack 2004). In a previous
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paper, we analysed the responses in seedlings’ leaf structure and
physiology for four Mediterranean Quercus species
under controlled conditions (Quero et al. 2006) and found
that the impact of drought on photosynthetic rate was
strongest in high irradiance. In this contribution, our main
objective is to examine the responses at whole-plant level,
after 6.5 months of seedling growth in a combination of
irradiance and water supplies.

First, we aimed to ascertain the variation in absolute growth
and in relative growth rate (RGR) across species, irradiances and
water supplies. We also analysed the effects of irradiance and
water on growth components, distinguishing morphological
traits: i.e. specific leaf area (SLA, leaf area/mass) and leaf
mass fraction (LMF, leaf/plant mass), which together drive
leaf area ratio (LAR, leaf area/plant mass;
LAR=SLA�LMF), and physiological traits, i.e. the net
assimilation rate (NAR), which reflects the balance of
photosynthetic rate against respiration and tissue loss rates. It
has been generally found that under low irradiance NAR
decreases (Poorter 1999, 2001), and increases in SLA and
LAR may play a compensatory role, partly associated with
reduction of the root mass fraction (RMF, root/plant mass;
Walters and Reich 1999). We tested the degree of such
compensation across irradiance�water supplies.

Second, we determined the degree to which the influence of
seed mass on seedling growth and morphology persisted across
irradiance and water supplies. Large-seeded species such as
Quercus strongly depend on seed reserves for their initial
development, especially in deeper shade [as shown previously
by analysis of short-term (50 days) seedling growth (Quero et al.
2007)]. Here, we tested for a middle-term influence (6.5 months)
on seedling growth, and its variation across irradiance and water
supplies.

Third, we determined whether leaf habit had any effect on
absolute growth rates or RGR and its components. As a general
trend, deciduous species tend to grow faster than evergreen
species because on average they have higher stomatal
conductance, photosynthetic and respiration rates, leaf nitrogen
concentration, and SLA (Reich et al. 1992; Villar et al. 1995;
Cornelissen et al. 1996; Takashima et al. 2004). Here, we
compared two evergreens and two deciduous Quercus species.

Fourth, we investigated the causes of differences in RGR
and absolute growth rate using correlations and causal models.
We analysedwhether the differences inRGRarose fromvariation
in morphological traits, such as SLA, LMF or LAR or from
changes in physiological traits as NAR. Across species SLA can
strongly drive interspecific variation in RGR (Poorter and
Remkes 1990; Marañón and Grubb 1993; Antúnez et al. 2001;
Villar et al. 2004; Ruiz-Robleto and Villar 2005). However,
several studies have shown that variation in NAR may
increase in importance during ontogeny and at higher
irradiance (Sack and Grubb 2001; Shipley 2002; Montgomery
and Chazdon 2002; Villar et al. 2005; Shipley 2006); thus, we
tested the importance ofNARonRGRvariation across irradiance
and water supplies.

Finally, we aimed to determine the ability to predict from
photosynthetic leaf responses the whole-seedling RGR. This is
critical for a predictive ecophysiology, and has been previously
demonstrated for predicting RGR across species (e.g. Kruger and

Volin 2006). Our study provides a model relating leaf gas-
exchange rates to whole-plant growth for woody seedlings in a
range of irradiance and water supplies.

Materials and methods
Experimental design

Four oak species, two evergreens [Quercus ilex subsp. ballota
(Desf.) Samp.andQuercus suberL.] and twodeciduous (Quercus
canariensis Willd. and Quercus pyrenaica Willd.),
(nomenclature follows Amaral 1990) were used in this study.
Acorns of each oak species were collected in forests of southern
Spain (as described in Quero et al. 2006). Single acorns were
weighed individually and sown on December 2002 in 3.9-L pots
(one acorn per pot). We subsampled acorns of each species,
separated these into seed and shell, and weighed seeds fresh and
after drying at 70�C for at least 48 h.We estimated initial seed dry
mass for each individual from the seed fresh mass, using species-
specific regression equations (R2 between 0.93 and 0.99; Quero
et al. 2007).

The experiment was performed in a greenhouse at the
University of Córdoba (Spain, 37�510N, 4�480W) with an
automatic irrigation system and regulated air temperature.
Seedlings were subjected to six combinations of irradiance
and water treatments (three levels of irradiance� two levels of
water). We used a split-plot design with three irradiance
treatments: high-irradiance (HI) receiving full irradiance (no
shade frame; 100% irradiance), medium-irradiance (MI; 27%
irradiance) and low-irradiance (LI; 3% irradiance) imposed by
using shade frames (1.5� 1.2� 2m); the treatments were
replicated four times, resulting in 12 shade-frame blocks in
total. Plants of each of the four oak species to be subjected to
each of the two levels of watering were randomly arranged
within each shade-frame block. Water treatments were
imposed in late April 2003: half the pots were not watered
further (LW, low-water treatment) while the other half were
kept continuously moist (HW, high-water treatment; Quero
et al. 2006). The low-water treatment simulated a typical
Mediterranean-climate seasonal drought, in which after rains
stop the soil dries out to the levels achieved at the end of the
experiment (Gómez-Aparicio et al. 2005). Irradiance levels
simulated the range of typical values experienced in the forest
understorey where oak seedlings grow (Marañón et al. 2004).
Because the watering supplies were not applied differently
across irradiances, we cannot exclude an interaction between
water supply and irradiance (see Abrams et al. 1992; Sack 2004),
especially at the beginning of the experiment, such that the
soil dried faster in the high irradiance treatments, as found in
some natural systems, e.g. early in the drought in gaps v.
understorey in some forests (Ellsworth and Reich 1992). By
the end of the experiment, the soil water content was
similar across irradiances (Quero et al. 2006). This interaction
does not affect the testing of hypotheses according to the
objectives of our experiment (see Introduction).

We conducted an initial and final harvest of seedlings.
The initial harvest was conducted in late April 2003 before the
beginning of the drought treatment, by which time the
seedlings had grown 4 months in the different irradiances;
15�17 seedlings per species and irradiance treatment were
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harvested.The secondharvestwas conducted in late July2003, by
which time the seedlings had grown ~6.5 months; 12�16
seedlings per species per irradiance and water treatment
combination were harvested, evenly among the 12 shade-
frame blocks. During each harvest, individual seedlings were
carefully extracted from each pot, the soil was completely
washed away from the roots, and leaves, stems and roots were
separated. Leaves were scanned, and leaf area was measured
using image analysis software (Image Pro-Plus v 4.5 Media
Cybernetic Inc., Bethesda, MD, USA). Dry mass of the plant
parts was determined after oven-drying at 70�C for at least 48 h.
Specific leaf area (SLA) was calculated as leaf blade area/dry
blade mass (Garnier et al. 2001), and root mass fraction (RMF),
stem mass fraction (SMF), and leaf mass fraction (LMF) were
calculated as the dry mass of root, stem and leaves, respectively,
divided by seedling dry mass. Acorn remains were excluded
from calculations.

Analysis of shade and drought effects
at the end of the experiment

For each species, we tested the effects of shade and drought on
absolute growth (final biomass) and biomass allocation at the end
of experiment. We analysed the data with general linear models
(GLM), considering the initial seed dry mass as a covariate, and
considering irradiance and water treatments, and shade-frame
block as categorical factors. As shade-frame block had no effect
on any variable measured (P> 0.05 in all cases), we removed this
factor and its interactions from the analyses (Zar 1984). We also
analysed the data for the four species together testing for an effect
of leaf habit (evergreen and deciduous), using GLMwith species
nested within leaf habit. Before the analysis, data were square-
root-, arcsine-, or log-transformed to achieve normality and
homoscedasticity (Zar 1984). Statistical analyses were
performed with Statistica v 7.1 (Statsoft Inc., Tulsa, OK,
USA). To control the inflation of type I error with repeated
testing, the false discovery rate (FDR, the expected proportion
of tests erroneously declared as significant) criterion was
controlled at 5% using a standard step-up procedure (García
2004).

Calculations of growth components

Relative growth rate (RGR) during the growth period
between harvests (~3 months), and its components (NAR,
LAR, SLA, LMF, SMF and RMF) were calculated following
the classical approach (Hunt et al. 2002; http://aob.
oxfordjournals.org/cgi/content/full/90/4/485/DC1, accessed
31 March 2005).

Determinants of RGR and final biomass

To determine the causes of variation in RGR and final biomass
across the four species grown in awide variation of irradiance and
water supplieswe used two approaches. First, we applied Pearson
correlation analyses to each pair of variables. However, these
bivariate relationships cannot differentiate direct or indirect
covariation between variables. Thus, we conducted a
multivariate analysis, using Shipley’s ‘d-sep’ method (Shipley
2000), to test different models to explain how differences in RGR

and absolute growth may be caused by seed mass, biomass
allocation and net assimilation rate.

Calculations of net carbon gain
Whole-plant level growth responses were calculated from
leaf-level carbon gain following a similar approach to that
by Holmgren (2000). Leaf-level net photosynthetic
carbon assimilation was estimated using the model by
Thornley (1976):

AðIÞ ¼
FIþ Amax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFIþ AmaxÞ2 � 4qIAmax

q

2q
� Rd;

ð1Þ

where A is the photosynthetic assimilation rate; I, the
photosynthetic active radiation (PAR); F, the apparent
quantum yield; Amax, the light-saturated photosynthetic
assimilation rate; Rd, the leaf dark respiration rate; and q, the
‘bendingdegree’or curvature.Weused the light curveparameters
(F,Amax,Rd, andq) calculated for 3�6 leaves of seedlings of each
species in each irradiance and water treatment, as reported by
Quero et al. (2006). During the growth experiment, the
photosynthetic photon-flux density (I) outside the greenhouse
was measured each hour with a light sensor (Net Radiometer,
Lambrecht, Germany). The shading obstruction (SO) of the
greenhouse superstructure was calculated using hemispherical
photography. Photographs were taken above seedlings using a
horizontally-leveled digital camera (CoolPix 995 digital camera,
Nikon, Tokyo, Japan) aimed at the zenith, using a fish-eye lens
with 180� field of view (FCE8, Nikon). Hemispherical
photographs were analysed with Hemiview canopy-analysis
software v 2.1 (1999, Delta-T Devices, Cambridge, UK). Two
of the irradiance treatments were applied using a green screen
with different levels of light transmittance (LT) (27%of available
radiation for MI and 3% for LI, quantified by a light PAR sensor
EMS7, PP-systems, Hitchin, UK). The photosynthetic active
radiation (PAR) received by each individual was calculated as
I�SO�LT each hour from 22 April to 16 July. Leaf net carbon
gain was modelled using the photosynthetic light curve (Eqn 1)
and the PAR received each hour for each plant where
photosynthesis rate was measured. Leaf Rd values were
considered as constant and were applied to the carbon gain
during the night; we did not consider root and stem respiration
rates. Values of leaf net carbon gain for the whole growth period
were calculated for given leaves and averaged for each species
and treatment. These values were correlated with RGR for each
species and treatment. Another approach was to estimate the leaf
carbon gain per unit of plant mass. Therefore, the resulting leaf
net carbongainvalues of each leafweremultiplied byLARvalues
(of the final harvest) per individual seedling to scale from a leaf
area basis to a whole-plant mass basis. This estimate involves
some level of uncertainty, as it neglects differences among leaves
on given plants in irradiance availability, in dark respiration, or in
photosynthetic rate, and does not consider differences across
treatments in root or stem respiration rates. This estimate of net
carbon gainwas averaged for each irradiance andwater treatment
and was tested for correlation with RGR in each treatment.
Additionally, RGR values for each irradiance and water
treatment were tested for correlation with Amax on an area and
mass basis (taken from Quero et al. 2006).
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Results

Effects of irradiance and water supplies on absolute
growth, and on RGR and its components

Species differed in biomass at the end of the experiment, ranging
from Q. suber (mean of 7.0 g) to Q. canariensis (mean of 2.0 g)
(Fig. 1A and Table S1 in the accessory publication available from
the online version of Functional Plant Biology). All species
increased strongly in biomass with higher irradiance
(explaining 64�86% of variance; Table 1; Fig. 1A). In
contrast, the watering treatments had a relatively small effect
on seedling biomass (explaining 3.4% of variance for
Q. pyrenaica down to 0% for Q. canariensis).

Seedlings of Q. suber alone, and of all species together
showed a significant irradiance�water interaction because the
drought treatment had a stronger impact on both absolute growth
and RGR under full irradiance (Fig. 1A), but a negligible
impact under low irradiance (Fig. 1A; Table 1). However, the
irradiance-water interaction explained only 0.6% of the
variance in final biomass.

Just as for absolute growth, the low irradiance and water
supply depressed seedling RGR (Fig. 1B). The RGR reduction
was very strong frommedium to low irradiance (RGRdeclinedby
61% in Q. canariensis and up to 99% in Q. pyrenaica), and
weaker from high to low water supply, averaged across
irradiances (no decline for Q. canariensis and up to a decrease
of 38% in the case of Q. pyrenaica). The impact of the drought
treatment onRGRwas strongunder full irradiance conditions, but
negligible under deep shade (Fig. 1B).

For all species the response of net assimilation rate (NAR) to
irradiance paralleled that of RGR (Fig. 1C), declining strongly
under low irradiance (by 92% on average). Averaged across
irradiances, drought-treated plants showed an 18% lower NAR
than well watered plants. As for RGR, the impact of the drought
treatment on NARwas negligible under deep shade. By contrast,
the leaf area ratio (LAR) increased at lower irradiance (Fig. 1D),
andwas in general unaffected by drought (Fig. 1D; Table 1). LAR
is the product of the specific leaf area (SLA) and the leaf mass
fraction (LMF). Oak seedlings responded to shade by increasing
SLA (Fig. 1E; Table 1), while LMF remained relatively stable
across treatments (Fig. 2A; Table 1). However, under deep shade,
oak seedlings showed an increased SMF (Fig. 2B; Table 1), and a
reducedRMF (Fig. 2C) relative to seedlings under full irradiance.
The two evergreen species (Q. suber and Q. ilex) increased their
RMF in the drought treatment (Fig. 2C; Table 1).

Effect of seed mass on seedling growth

Species varied in the importance of seed mass determining
absolute growth after 6.5 months of growth (Table 1), ranging
from a very strong dependence for Q. canariensis, the species
with smallest seedlings, to almost complete independence for
Q. pyrenaica, the specieswith largest seedlings.On average, seed
mass contributed significantly to the differences among seedlings
in absolute growth (Table 1; Fig. 3). There was a strong effect of
irradiance on the importance of seed mass as a driver of absolute
growth.Thecorrelationcoefficientof seedmass andfinal seedling
biomasswashigher at low irradiance (LI) than at higher irradiance
(MI and HI) for all species but Q. pyrenaica (Fig. 3D). The
proportionofvarianceoffinal seedlingbiomass explainedbyseed

masswas as high as 80%under low irradiance but near zero under
high irradiance. The relationship of seedling biomass and seed
masswas consistent between the twowatering treatments (Fig. 3).

Association of leaf habit with absolute growth and RGR

A significant association of leaf habitat with absolute growth
across species and treatments was found, explaining 7% of
variance. Leaf habit also had a significant effect on final
biomass; evergreen species had a higher final biomass than
deciduous species, but leaf habit explained only 1% of
variance in final biomass (Table 1; Fig. 1A). Deciduous
species had higher SLA but lower LMF than evergreens
(Table 1; Figs 1E, 2A); as LAR is equal to SLA�LMF, no
differences in LAR were found between both functional groups
(Table 1; Fig. 1D).

Determinants of RGR and final biomass

Strong correlations were found across all species and treatments
among final seedling biomass, RGR, growth components and
seedmass (Table 2). Final biomasswas positively correlatedwith
seed mass, RGR and NAR, but negatively with SLA and
LAR. Variation in RGR was explained mainly by changes in
NAR, andnot bymodifications ofLAR (Fig. 4A,B). Thevariation
in LAR was explained both by SLA (r= 0.64, P < 0.001) and by
LMF (r= 0.48, P< 0.05). Across all species and treatments, SLA
was negatively correlated with NAR (r=�0.68, P < 0.001) and
with RGR (r=�0.64, P< 0.001, Fig. 4C), mainly due to SLA
increasing, and NAR and RGR both decreasing in the shade
relative to the high light treatments. Seedling RGR was
negatively correlated with SMF, but did not show any relation
with LMF or RMF. The SMF and LMF were positively
inter-correlated and both were negatively correlated with RMF
(Fig. 4D). Seed mass was negatively correlated with LMF
(r=�0.77, P < 0.001).

When the two water treatments were analysed separately, the
results proved to be very similar (data not shown), with the
exception that under the drought treatment, the negative
relationships between RGR with SLA and SMF were
non-significant.

We tested different causal models linking final seedling
biomass, RGR, growth components and seed mass
following the d-sep method of Shipley (Shipley 2000; see
Fig. S1; Table S2). For brevity, here we show the only model
that cannot be rejected at the 5% level of significance among all of
those tested (c2 = 15.62, 2 d.f., P = 0.209, Fig. 5; see Fig. S1;
Table S2 for a complete list of alternative models). According to
this model, the final seedling biomass is directly, positively
determined by RGR and seed mass. In turn, a higher RGR
is directly determined by high NAR and higher LMF. There
was a direct negative influence of SLA on NAR, and a direct
negative influence of SLA on final biomass, not mediated by
NAR and RGR. In contrast, seed mass directly, negatively
affected RGR and LMF, but had a positive effect on NAR.

Leaf carbon balance and seedling growth

We did not find any correlation between seedling RGR and
maximum photosynthetic rate on an area basis or on a mass
basis (Fig. 6A). However, RGRwas positively related to average
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net carbon assimilationon a leaf area basis (R2 = 0.60;P= 0.0003)
and evenmore strongly related to average net carbon assimilation
on a plant mass basis (R2 = 0.66; P = 0.00003; Fig. 6B).

Discussion

We found that multiple factors drive differences in absolute
seedling growth and RGR in contrasting irradiance and water
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supplies, with a special importance of seed mass and leaf habit.
Additionally, we found that leaf-level carbon gain can predict
RGR, across species and across contrasting light and water
availabilities.

Effects of irradiance and water on absolute
and relative growth

Growth and biomass allocation were affected by limiting
irradiance and water, with irradiance having the greatest effect.
Increasing irradiance had a non-linear effect on growth and
biomass allocation. For example, we found a strong increase
of RGR from 3% to 27% irradiance, but no further increase from
27% to 100% irradiance; this finding is similar to that shown by
previouswork in a range of systems (e.g. Poorter 1999;Holmgren
2000; Sánchez-Gómez et al. 2006). Although we found greater
NAR at high irradiance, this increase was counteracted by the

lower LAR and SLA. Similarly, under field conditions, seedling
growth under moderate shade of pioneer shrubs is not reduced
relative to open sites (Gómez-Aparicio et al. 2004, 2005).

Previous studies have reported a significant impact of drought
on seedling growth across irradiance gradients, even in deep
shade (Sack and Grubb 2002; Sack 2004; Valladares and Pearcy
2002). However, we found an impact of the drought treatment
only in high irradiance and not in deep shade. This pattern may
have arisen due to the drought being applied by suspending
watering and thus the soil dried more rapidly under high
irradiance, where the evaporative demand was higher, and the
seedlings were larger (Abrams et al. 1992; Coomes and Grubb
2000;SackandGrubb2002).By the endof thedrought period, the
soil was similarly dry across irradiances, but the growth
differences quantified over the whole experiment integrated
the period in which the soil was moister in the shade
treatments. This pattern of interaction of irradiance and water

Table 1. Factors explaining plant biomass and biomass allocation in four Quercus species
Results of 2-way (individual species) and 3-way (all species’ data) ANCOVAs for final biomass, specific leaf area (SLA), leaf area ratio (LAR), leaf
mass fraction (LMF), stemmass fraction (SMF) and rootmass fraction (RMF), for 6.5month-old oak seedlings (n= 12�16),with factors species (S), irradiance (I)
andwater (W) treatments. Initial seedmasswasusedas covariate. For the analysiswithall species,weconsidered speciesnestedwithin leafhabit. Theproportionof
the explained variance (SSx/SStotal) and the level of significance (*,P< 0.05; **,P< 0.01; ***,P< 0.001) for each factor and the interactions are indicated; those

values not significant after controlling the false discovery rate are underlined. R2 (�100) is the proportion of total variance accounted by the model

Species Factor Final Biomass SLA LAR LMF SMF RMF

Quercus ilex subsp. ballota Seed mass 8.1*** 1.1 0.4 0.3 1.0 0.0
Irradiance (I) 84.1*** 77.2*** 62.5*** 7.2* 23.6*** 4.9
Water (W) 0.5* 0.1 3.0** 15.6*** 2.3 12.3***
I�W 0.4 0.1 1.6 8.0* 7.2* 18.0***
R2 93.1 78.5 67.5 31.0 34.1 35.2

Quercus suber Seed mass 3.8*** 0.6 1.8** 2.4 1.0 0.0
Irradiance (I) 86.0*** 87.0*** 77.3*** 15.2*** 27.1*** 18.8***
Water (W) 1.2*** 0.1 2.5** 14.9*** 14.7*** 21.1***
I�W 1.3** 0.1 0.9 4.3 2.5 0.6
R2 92.3 87.7 82.5 36.9 45.3 40.5

Quercus canariensis Seed mass 10.8*** 1.8* 1.8* 0.7 0.2 0.1
Irradiance (I) 63.7*** 70.1*** 59.8*** 13.3** 21.5*** 32.3***
Water (W) 0.0 0.4 0.8 6.0* 0.0 2.9
I�W 0.7 3.6** 3.9* 1.6 7.2* 3.0
R2 75.2 75.9 66.4 21.5 28.9 38.3

Quercus pyrenaica Seed mass 0.6 0.4 1.8 1.5 0.0 0.1
Irradiance (I) 77.9*** 52.3*** 47.0*** 0.4 59.4*** 43.0***
Water (W) 3.4*** 1.2 1.1 0.0 0.1 0.0
I�W 0.4 0.3 1.3 3.3 0.1 1.4
R2 82.3 54.1 51.1 5.3 59.5 44.4

All species Seed mass 3.6*** 0.6* 1.1*** 0.3 0.0 0.0
Species (leaf habit) (S) 6.7*** 10.9*** 14.4*** 25.7*** 2.0** 15.2***

Leaf habit (H) 1.0*** 18.2*** 0.3 21.1*** 6.9*** 15.1***
Irradiance (I) 71.5*** 48.7*** 50.8*** 1.9** 28.7*** 13.4***
Water (W) 0.5** 0.3* 0.5* 2.7*** 1.2** 4.9***
I�W 0.6** 0.1 0.6* 0.8 1.9** 1.9***
H� I 0.3* 0.4* 0.9** 0.8 1.9** 1.1*
H�W 0.0 0.1 0.7** 0.8* 1.5** 1.9***

H� I�W 0.0 0.1 0.1 0.6 0.1 0.8*
S� I 0.3 0.3 0.8 1.2 3.2*** 1.0
S�W 0.3* 0.0 0.4 0.4 0.7 0.4

S� I�W 0.0 0.4 1.0* 0.9 1.0 2.1**
R2 85.1 80.0 71.5 57.2 49.1 57.9
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treatments is similar to real-life scenarios in thefield, inwhich soil
dries between rainfall events and soil desiccates faster in clearings
(e.g. Ashton 1992; Ellsworth and Reich 1992). We note that in
several other field studies, the soil dries more rapidly in the
understorey, due principally to greater root competition
(Veenendaal et al. 1996; Valladares and Pearcy 2002).
However, when the soil is moister in the shade, this represents
a type of facilitation not typically described in the literature (cf.
Holmgren 2000), andwhichwould act simultaneously with other
benefits of shade, including lower evaporative demand, and
protection from the oxidative stresses associated with high
irradiance (Demmig-Adams and Adams 1996; Tattini et al.
2005).

Integrating irradiance and water responses

The results allowus to propose a framework for understanding the
impacts of natural combinations of irradiance and water on
seedling RGR and absolute growth. First, when soil dries more
slowly in shade, as in our study, and, potentially, facilitation or
primary limitation effects alsoprotect plants in shade, therewould

be a lower reduction of RGR and absolute growth due to dry soil
relative to under high irradiance. This situation is most likely to
occur if the drought is short, if the shade is very deep, or if the
plantshave inherent lowgrowth rates (because small plantswould
deplete water less quickly, and would also be slower to manifest
growth differences across irradiances). Alternatively, when soil
dries equally across irradiances, the findings of previous studies
suggest thatRGRtypicallydeclinesby the sameproportionacross
irradiances, and notably, absolute growth declines much more
strongly under high irradiance than in deep shade, because
absolute growth is an exponential function of RGR (reviewed
by Sack and Grubb 2002; Sack 2004). Finally, when soil dries
more strongly in deep shade, due especially to stronger root
competition (Veenendaal et al. 1996; Coomes and Grubb 2000;
Valladares and Pearcy 2002), RGR and absolute growth would
decline equally, or more strongly during the drought in deep
shade, so depending on the degree to which the facilitation
benefits provided by the shade can compensate for the stronger
soil drought in the shade. This framework covers a wide range of
shade and drought combinations, and predicts that plants are on
the whole benefited during short-term drought by deep shade.

0.0

0.2

0.4

0.6

0.8

1.0

LM
F

 (
g 

g–1
)

0.0

0.2

0.4

0.6

0.8

1.0

S
M

F
 (

g 
g–1

)

0.0

0.2

0.4

0.6

0.8

1.0

R
M

F
 (

g 
g–1

)

Irradiance (%)

Quercus suber Quercus ilex

Evergreens 
Quercus

canariensis
Quercus.
pyrenaica 

Deciduous 

(A)

(B)

(C)

3 27 100 3 27 100 3 27 100 3 27 100
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However,we note that evenwhen the impact of drought isweaker
in shade, the shade entails, in real terms, a reduction in carbon
assimilation. During longer-term drought, the combined
suppression of growth by drought and shade may filter out
some species (Niinemets and Valladares 2004), though in
many systems species can survive repeated occasional or
seasonal strong drought in deep shade (Sack et al. 2003;
Engelbrecht et al. 2007).

Seed mass and leaf habit as determinants of final
seedling biomass

Seedmass is a crucial factor influencing seedling growth (Ke and
Werger 1999; Poorter and Rose 2005). In general, for given

species greater seed mass drives greater seedling size, and
absolute growth, for months or several years (Poorter and
Rose 2005). However, the initial strength of the effect may
depend itself on the species’ typical seed size; for example
Pinus sylvestris (which has an average seed mass of 9mg)
showed no correlation of seed mass with seedling biomass
after one growing season (Castro 1999). Our study shows that
for Quercus species, seed size can impact on seedling biomass
accumulation for 7 months or more.

We found that seedling biomass depended on seed mass more
strongly under shaded conditions, for three of four species
(Fig. 3). A similar effect was found in our previous study on
50 days growth (Quero et al. 2007), and for tropical woody plants
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Fig. 3. Final seedling biomass after 6.5 months of growth in relation to initial seed mass for four Quercus species in irradiance�water treatments. Squares,
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Table 2. Correlations coefficients between plant variables in four Quercus species
Pearson correlation coefficients between seedmass, final seedling biomass, RGR and growth components for all species and irradiance andwater treatments. The
level of significance is indicated (*, P< 0.05; **, P< 0.01; ***, P< 0.001); n.s., not significant (P> 0.05); underlining signifies a value not remaining significant
after controlling the false discovery rate (FDR).RGR, relativegrowth rate;NAR,net assimilation rate; LAR, leaf area ratio; SLA, specific leaf area;LMF, leafmass

fraction; SMF, stem mass fraction; RMF, root mass fraction

NAR LAR SLA LMF SMF RMF RGR Seedling biomass

Seed mass �0.07n.s. �0.36n.s. 0.32n.s. �0.81*** �0.38n.s. 0.74*** �0.36n.s. 0.49**
NAR � �0.64*** �0.68*** �0.11n.s. �0.65*** 0.32n.s. 0.85*** 0.67***
LAR � � 0.64*** 0.48* 0.71*** �0.62*** �0.35n.s. �0.69***
SLA � � � �0.31n.s. 0.42* 0.07n.s. �0.64*** �0.50*
LMF � � � � 0.56** �0.95*** 0.21n.s. �0.43*
SMF � � � � � �0.79*** �0.48* �0.72***
RMF � � � � � � 0.02 0.59**
RGR � � � � � � � 0.46*
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(Paz and Martínez-Ramos 2003). Two factors may explain this
effect. First, under deep shade where seedling growth is slower,
initial effects of seedmassmaypersist longer. Second, under deep
shade seedling growth becomes more dependent on cotyledon
reserves. The persistence of an advantage for larger seeds would
provide an ecological advantage in the understorey of
Mediterranean forests and shrublands.

Leaf habit was also a significant driver of seedling growth, but
explained only 1% of variation in growth. Evergreens had higher
final biomass thandeciduous species (Fig. 2A).As ageneral trend,
deciduous species have higher SLA and RGR than evergreen
species (Reich et al. 1992; Cornelissen et al. 1996). However,
evergreen species can range widely in SLA and growth, and
overlap with the range of deciduous species (Niinemets 2001;

Wright et al. 2004). Our findings for four congeneric species is,
thus, consistent with recent phylogenetically-controlled
comparisons that showed no consistent, predictable differences
in RGRbetween deciduous and evergreen species (Antúnez et al.
2001; Ruiz-Robleto and Villar 2005; Espelta et al. 2005).

Determinants of RGR and final biomass

We found complementary results for the determinants of RGR
using the more intensive analysis of causal models with the d-sep
method (Shipley 2000). Model G (Fig. 5) was the only
non-rejected model. According to this model, seedling
biomass across species and treatments was determined
directly, positively by both RGR and seed mass. These results
are consistent with previous studies showing the importance of
seed mass (Ke and Werger 1999; Poorter and Rose 2005; Quero
et al. 2007) and of RGR on final biomass (Van Andel and Biere
1989). Differences in RGR were caused by NAR and not by
LAR. In previous studies, LAR has often been shown to be a
strong determinant of interspecific differences in RGR (Poorter
and Remkes 1990; Cornelissen et al. 1996), though the relative
importance of LAR or NAR in determining RGR varies,
depending on the irradiance (Shipley 2002; Kruger and Volin
2006), temperature (Loveys et al. 2002), nitrogen concentration
(de Groot et al. 2002), and time scale (Sack and Grubb 2001;
Villar et al. 2005). Shipley (2006) in a meta-analysis of growth
including of 614 species found that in general, NARwas the best
predictor of RGR, as found in this study (see also Antúnez et al.
2001; Ruiz-Robleto and Villar 2005). Notably, for the four
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Quercus species, RGR was also driven positively by LMF; a
similar patternwas found for large species sets tested (Cornelissen
et al. 1996; Kruger and Volin 2006), but not all (Shipley 2006).

A direct negative influence of SLA on NAR was also found;
most likely, this linkage arose because the shaded seedlings, with
higher SLA, have the lowest photosynthetic rates (Niinemets
et al. 2004; Quero et al. 2006). Shipley (2002) found also a
trade-off between SLA and NAR as function of daily irradiance.
In addition, the model showed a directly negative impact of SLA
on final biomass; we cannot find a biological explanation for this

relationship but it should be caused by indirect effect of light on
both variables.

In contrast, seedmass was directly, negatively related to RGR
and LMF, but was a positive driver of NAR. Seed mass was
previously found to be a negative determinant of RGR across
species (Marañón and Grubb 1993; Cornelissen et al. 1996) and
on LMF, as seedlings from bigger seeds allocate more biomass to
roots and less to leaves. The greater root allocation likely allows
higher rates of water and nutrients assimilation, and higher NAR
(Reich et al. 1998).
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Leaf carbon balance predicting seedling growth

Our findings demonstrate that seedling RGR can be
predicted from short-term measurements of leaf physiology,
for closely related species across water and irradiance
supplies. We found that RGR was strongly related to
estimated leaf carbon assimilation even without accounting for
differences across treatments in LAR. These findings
were consistent with the finding that RGR across
treatments was related to NAR but not to LAR, and signal an
especially strong role for leaf-level physiology in defining
performance across resource supply combinations (see also
Quero et al. 2006).

Typically, the instantaneous maximum photosynthetic rate
considered per leaf mass (Amax) is assumed to be a strong
determinant of species-differences in RGR (Givnish 1988;
Poorter et al. 1990; Poorter 1999; Shipley 2002). However, we
found no correlation between Amax and RGR across treatments
(see alsoMontgomery 2004). Moreover, we found no correlation
between RGR and other photosynthetic light parameters studied
(F, Rd, and q; P > 0.2; data not shown). We propose that a
correlation between Amax and RGR would be strongest for
plants of a range of species grown under high irradiance and
water supply.However, across a gradient of resource supplies, the
correlation would be weakened, due to interspecific variation in
theplasticity ofLARandespecially of physiologyacross resource
supplies. Because resource supplies vary strongly in the field, a
more broadly integrative estimate of leaf carbon gain, using
photosynthetic light response curves as presented here, is
needed to predict RGRs. Our model of leaf carbon balance
assumed many simplifications since other components of plant
respiration have not been considered. A more comprehensive
model would include dynamics in stem and root respiration
(Givnish 1988; Poorter et al. 1990; Kruger and Volin 2006).
In addition, although this is not an analytical model but a
correlative one based on relationships between variables, we
note that the correlation of our carbon balance estimate with
RGR was very high (even with NAR, r = 0.66, P< 0.05, data not
shown), potentially suggesting either that the differences in
carbon gain were more important than carbon loss in defining
RGR, or that the rates of carbon loss across species and treatments
were correlated with those of carbon gain (Walters and Reich
1999). Kruger and Volin (2006) found a strong interspecific
correlation between estimated carbon gain with RGR and
NAR; our results indicate that this approach can be extended
for plants of different species across contrasting resource
supply combinations. The ability to predict seedling growth
responses from leaf-level gas-exchange measurements will
have important application for predicting seedling
performance across heterogeneous microsites. Our findings
also indicate that extrapolations of plant performance from
light-saturated net photosynthetic rates must be done with
caution, as the whole range of environmental conditions need
to be accounted for to accurately link leaf traits to whole-plant
performance.
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Accessory publication
Table S1

Mean� s.e. values of variables analysed for Quercus seedlings in different irradiance and water treatments. (Irradiance treatments were HI: high irradiance,
MI: medium irradiance, and LI: low irradiance. Water treatments were LW: low water, and HW: high water.) For complete names of variables, see text.

Sample size (N) per irradiance and water treatment is also indicated

Unit Quercus suber (evergreen)
HI MI LI

LW HW LW HW LW HW

N 15 12 13 15 14 16
Seed mass g 4.2 ± 0.8 4.2 ± 0.8 4.7 ± 1.0 4.2 ± 0.8 4.5 ± 0.7 4.1 ± 1.2
Seedling biomass g 9.2 ± 0.4 14.7 ± 1.9 6.6 ± 0.4 7.8 ± 0.7 1.9 ± 0.1 1.7 ± 0.1
RGR mg g�1 day�1 8.6 ± 3.9 13.4 ± 6.6 9.9 ± 4.0 11.7 ± 5.0 3.7 ± 6.0 1.8 ± 6.8
NAR g cm�2 day�1 4.2 ± 1.9 4.8 ± 2.6 2.5 ± 1.1 2.8 ± 1.4 0.7 ± 0.9 0.2 ± 1.0
LAR m2 kg�1 2.3 ± 0.4 2.7 ± 0.6 4.1 ± 0.9 4.3 ± 1.0 6.7 ± 1.8 7.3 ± 2.1
SLA m2 kg�1 11.7 ± 1.5 11.2 ± 1.9 14.8 ± 3.0 14.7 ± 2.2 26.1 ± 5.5 25.7 ± 5.2
LMF g g�1 0.21 ± 0.04 0.25 ± 0.07 0.28 ± 0.05 0.30 ± 0.06 0.26 ± 0.07 0.29 ± 0.08
SMF g g�1 0.14 ± 0.04 0.17 ± 0.06 0.15 ± 0.04 0.18 ± 0.06 0.22 ± 0.05 0.24 ± 0.07
RMF g g�1 0.66 ± 0.07 0.59 ± 0.10 0.57 ± 0.08 0.53 ± 0.12 0.52 ± 0.09 0.49 ± 0.11

Unit Quercus ilex (evergreen)
HI MI LI

LW HW LW HW LW HW

N 15 12 13 16 15 13
Seed mass g 2.5 ± 0.7 2.9 ± 0.9 2.5 ± 0.6 2.6 ± 0.7 3.1 ± 0.8 2.6 ± 0.6
Seedling biomass g 4.6 ± 0.4 7.2 ± 0.8 2.4 ± 0.3 2.6 ± 0.3 0.8 ± 0.1 0.7 ± 0.1
RGR mg g�1 day�1 14.4 ± 7.4 19.9 ± 7.6 9.1 ± 8.1 10.3 ± 8.1 2.6 ± 7.2 0.9 ± 6.7
NAR g cm�2 day�1 7.2 ± 3.8 8.0 ± 3.7 2.1 ± 1.7 2.2 ± 1.7 0.5 ± 1.4 �0.1 ± 1.5
LAR m2 kg�1 2.6 ± 0.8 3.0 ± 0.9 4.0 ± 1.2 4.3 ± 1.3 4.9 ± 1.6 4.9 ± 1.2
SLA m2 kg�1 8.0 ± 1.8 8.0 ± 2.4 10.7 ± 2.8 10.4 ± 2.2 15.3 ± 3.8 15.4 ± 3.5
LMF g g�1 0.32 ± 0.18 0.38 ± 0.09 0.39 ± 0.10 0.42 ± 0.09 0.33 ± 0.11 0.32 ± 0.08
SMF g g�1 0.17 ± 0.05 0.20 ± 0.06 0.17 ± 0.05 0.20 ± 0.05 0.25 ± 0.08 0.23 ± 0.06
RMF g g�1 0.52 ± 0.11 0.43 ± 0.10 0.44 ± 0.12 0.40 ± 0.10 0.44 ± 0.11 0.46 ± 0.09
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Unit Quercus canariensis (deciduous)
HI MI LI

LW HW LW HW LW HW

N 12 14 13 13 12 14
Seed mass g 2.5� 0.8 2.0� 0.8 2.2� 0.9 2.3� 1.3 2.6� 0.7 2.5� 0.9
Seedling biomass g 3.1� 0.3 3.2� 0.2 2.3� 0.3 2.1� 0.3 0.7� 0.1 0.6� 0.1
RGR mg g�1 day�1 15.9� 12.2 15.4� 13.3 17.4� 15.6 16.3� 15.3 8.1� 9.8 4.9� 12.4
NAR g cm�2 day�1 5.8� 4.0 4.0� 2.9 4.3� 2.9 3.3� 2.4 0.9� 1.1 0.7� 1.5
LAR m2 kg�1 3.6� 1.5 4.4� 1.7 5.8� 3.3 6.0� 3.3 9.3� 3.0 8.9� 3.7
SLA m2 kg�1 14.4� 4.1 15.4� 4.5 18.6� 6.9 18.3� 6.9 27.0� 8.2 24.4� 7.6
LMF g g�1 0.26� 0.08 0.29� 0.09 0.31� 0.14 0.34� 0.15 0.36� 0.12 0.37� 0.14
SMF g g�1 0.16� 0.06 0.17� 0.06 0.19� 0.08 0.20� 0.09 0.23� 0.06 0.21� 0.11
RMF g g�1 0.61� 0.17 0.57� 0.18 0.54� 0.21 0.51� 0.21 0.43� 0.11 0.45� 0.15

Unit Quercus pyrenaica (deciduous)
HI MI LI

LW HW LW HW LW HW

N 16 14 16 14 14 16
Seed mass g 4.6� 1.0 4.7� 1.2 4.0� 0.9 4.6� 1.0 4.6� 1.1 4.9� 1.1
Seedling biomass g 9.0� 0.8 13.1� 1.5 5.1� 0.3 7.4� 0.8 1.8� 0.1 2.2� 0.2
RGR mg g�1 day�1 11.2� 6.0 15.4� 6.4 6.6� 4.8 10.9� 6.5 �0.9� 4.8 0.9� 6.3
NAR g cm�2 day�1 5.7� 3.2 8.3� 3.8 2.5� 1.4 3.4� 2.4 0.4� 0.8 0.3� 1.2
LAR m2 kg�1 2.2� 0.8 2.0� 0.7 3.3� 1.6 3.1� 1.6 4.1� 1.9 4.2� 1.7
SLA m2 kg�1 14.9� 3.5 13.8� 3.2 19.0� 4.3 18.5� 4.4 29.7� 7.3 29.1� 6.8
LMF g g�1 0.15� 0.05 0.14� 0.04 0.17� 0.07 0.16� 0.07 0.14� 0.05 0.15� 0.06
SMF g g�1 0.11� 0.03 0.11� 0.04 0.12� 0.04 0.12� 0.05 0.21� 0.06 0.22� 0.06
RMF g g�1 0.75� 0.11 0.76� 0.11 0.71� 0.11 0.73� 0.14 0.66� 0.11 0.65� 0.11

Table S2
Probabilities under the null hypothesis that the data accordwith each of the six proposedmodels,
using thed-sepmethod.ModelGshown inbold, is theonlymodel that cannotbe rejectedwithour
dataset, after controlling the False Discovery Rate (FDR) at the 5% level, following the Ventura

et al. (2004) criteria

Model type c2 d.f. P

A 54.46 18 0.00002
B 66.22 18 0.00000
C 92.72 28 0.00000
D 72.92 24 0.00000
E 34.65 18 0.01046
F 28.19 12 0.00519
G 15.62 12 0.20928
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Fig. S1. Alternative multivariate models linking the Seed mass , specific
leaf area (SLA), leaf mass ratio (LMF), leaf area ratio (LAR), net assimilation
rate (NAR), relative growth rate (RGR) and Seedling biomass. Model G was
the best fitted to the dataset of Quercus seedling responses to water and
irradiance treatments.
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