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Abstract

Traditional aquaculture produces wastewater with high nutrient and organic matter

concentrations. Poly‐culture can improve this problem including “extractive species”
such as sea cucumbers along with the primary species. The influence of sea cucum-

bers on transparent exopolymer particles (TEP) (i.e. biofilm precursors) has not been

previously explored. Here, we monitored during 1 year the concentration of nutri-

ents, total organic carbon (TOC), particulate organic matter (POM), TEP, chlorophyll‐
a and bacteria in two tanks of 50,000 L. One tank only contained Anemonia sulcata,

whereas the other tank also included holothurians. To complement these time‐ser-
ies, we performed three short‐term experiments in smaller (300 L) tanks. Three

tanks contained A. sulcata plus Holothuria tubulosa (+H treatment) and other four

tanks contained only A. sulcata (−H treatment). In the time‐series, we found that the

concentration of ammonium, nitrate, TOC, POM, TEP and bacteria in the effluent of

the tank with holothurians was lower than in the effluent of the tank without

holothurians. The three experiments confirmed that the holothurians reduced signifi-

cantly nitrates, bacterial abundance and TEP concentration. Therefore, these inverte-

brates can control bacterial proliferation and prevent biofilm formation minimizing

likely the risk of outbreak of pathogenic bacteria and improving the hygiene of the

tanks.
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1 | INTRODUCTION

During last decades, human activities such as overfishing, addition of

pollutants and climate change are substantially affecting species

stocks and diversity in marine ecosystems (Halpern et al., 2008; Pur-

cell et al., 2013). Moreover, the exponential growth of human popu-

lation has boosted the global demand of fish and seafood, however

extractive fisheries are more and more limited. In fact, aquaculture

now accounts for approximately 50% of human consumption of fish

and seafood (Bostock et al., 2010; FAO, 2018). Therefore, a respon-

sible aquaculture is a global challenge for both marine biologists and

food producers (Diana et al., 2013). These last authors proposed

poly‐culture and ‐integrated multitrophic aquaculture (IMTA) as alter-

native procedures to alleviate, to some extent, the environmental

problems derived from traditional aquaculture.

Traditional aquaculture produces wastewater that usually con-

tains high loads of organic and inorganic nutrients, antibiotic and

uneaten food pellets (Black, 2001; Klinger & Naylor, 2012; Read &

Fernandes, 2003). The influence of this wastewater on the marine

environment depends on the production system (extensive vs. inten-

sive/semi‐intensive), aquaculture system type (tank, pond and cage),
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the cultured species, as well as the carrying capacity of the recipient

waters. During wastewater discharges from aquaculture facilities or

under the cages in offshore installations, processes such as eutrophi-

cation and anoxia in sediments can happen (Crab, Avnimelech,

Defoirdt, Bossier, & Verstraete, 2007). Aquaculture wastewater can

be a relevant source of nitrogen stimulating primary producers and

increasing the risk of algal blooms or red tides (Ajin, Silvester,

Alexander, Nashad, & Abdulla, 2016). Similarly, oxygen depletion in

sediments can cause the release of ammonia and sulfide changing

the physicochemical properties of water affecting fishes and corals

(Kalantzi & Karakassis, 2006). Faecal waste and uneaten foods con-

stitute a fraction of particulate organic matter that is deposited in

the bottom of the tanks or below the cages in offshore installations

affecting bacterial activity and sediment properties. These changes

also modify the biomass and diversity of macrobenthos (Yokoyama,

2002). In the particular case of inshore installations, wastewater

from aquaculture tanks usually has to be treated before being

returned to the aquatic ecosystems.

Several procedures to treat aquaculture wastewaters are in prac-

tice. To decide which treatment is more appropriate several factors

should be considered such as land and water availability, wastewater

local regulation and operational expenses. Wastewater treatments

such as Fenton's oxidation (Lee & Shoda, 2008), sequencing batch

reactor (Fontenot, Bonvillain, Kilgen, & Boopathy, 2007), up‐flow
anaerobic sludge bed or integrated anaerobic/aerobic biological treat-

ments (Bortone, 2009) are used, although they imply high economi-

cal costs and eventually can generate toxic by‐products and

membrane fouling in comparison with alternative biological treat-

ments. In general, biological treatments are more acceptable by fish

producers and policy makers. For instance, Da, Phuoc, Duc, Troell,

and Berg (2015) proposed the reuse of wastewater from Striped

Catfish farms in rice crops. Other authors proposed the recovering

of phosphorous from wastewaters using the gastropod shell (Ola-

doja, Adelagun, Ahmad, & Ololade, 2015) or aquatic plants (Buhmann

& Papenbrock, 2013,and Zhang, Achal, Xu, & Xiang, 2014). Diana

et al. (2013) recommended the integrated multitrophic aquaculture

(IMTA) and poly‐culture as responsible procedures that can decrease

inorganic and organic nutrient loads in the effluents using “extrac-
tive” species that can reduce the costs of wastewater treatments.

IMTA and poly‐culture procedures, unlike mono‐specific aquacul-

ture, use complementary species where the excretion, faecal and

food wastes from the primary species are nutritional resources of

the “extractive” species (Chopin, Cooper, Reid, Cross, & Moore,

2012). Therefore, these aquaculture procedures include primary spe-

cies (e.g., finfish), extractive species that filter or ingest the sus-

pended or deposited organic matter (e.g., mussels, oysters,

holothurians), and extractive species that assimilate inorganic nutri-

ents (e.g., seaweeds) reducing the loads of mineral nutrients and

organic matter in the effluents. Therefore, it is desirable that the

upcoming expansion of aquaculture develops these co‐culture proce-

dures to remove or, at least, reduce these organic and inorganic

loads in the effluents and, simultaneously, provide extra species with

an additional economical or ecological value.

Sea cucumbers are species with high extractive capacity for

organic matter in sediments (Nelson, MacDonald, & Robinson,

2012a, b; Slater & Carton, 2009; Yokoyama, 2013, 2015 ). However,

to the best of our knowledge, the specific effects of sea cucumbers

on biofilm precursors such as transparent exopolymer particles (TEP)

have not been previously explored. In addition, these marine inverte-

brates are very demanded for human consumption in some countries

of Asia; where overfishing have declined their stocks (Purcell et al.,

2013). Therefore, sea cucumber cultures could, on the one hand,

mitigate the overfishing problem in some regions and, on the other,

improve water quality in poly‐culture installations. Another asset of

sea cucumbers is their biotechnological potential. Their microbiomes

appear to be an important source of new antimicrobial substances

(Chludil, Muniain, Seldes, & Maier, 2002; Gowda, Goswami, & Khan,

2008; Haug, AK, Styrvold OB, Sandsdalen E, Olsen ØM, & Stensvag

K., 2002; Kumar, Chaturvedi, Shukla, & Lakshmi, 2007; León‐Palmero

et al., 2018). Therefore, the use of sea cucumbers in poly‐culture has

also a pharmaceutical interest (Bhatnagar & Kim, 2010; Valliappan,

Sun, & Li, 2014).

In this study, we assess the effects of holothurians as extractive

species of nutrients and organic matter in aquaculture tanks with

Anemonia sulcata as primary species. During 1 year, we monitored

the changes in the concentration of total organic carbon, particulate

organic matter, bacteria, chlorophyll‐a, transparent exopolymer parti-

cles and major nutrients (ammonium, nitrate, nitrite and total phos-

phorous) in two big tanks of 50,000 L that only differed in the

presence of holothurians. Afterwards, to corroborate the observa-

tions obtained in the big tanks, we performed three short‐term
experiments manipulating the presence of holothurians in smaller

tanks (300 L). We observed that the presence of holothurians

reduced significantly the concentration of nitrate, transparent

exopolymer particles and bacterial abundance both in the big tanks

and in the short‐term experiments. TEP reduction by sea cucumbers

was very remarkable. Therefore, TEP and associated bacteria appear

to be a food resource for holothurians and its ingestion might have

implications for the keeping of tank hygiene as well as for the gut

microbiota of these invertebrates.

2 | MATERIAL AND METHODS

2.1 | Time‐series in the big‐volume tanks

We monitored for 1 year two aquaculture tanks at iMareNatural S.L.

facilities (https://www.imarenatural.com) in Southern Spain (36°44′
38″ N, 3°35′59″ W). Each tank (radius = 3 m, high = 1.8 m with ca.

50,000 liters of capacity) was connected directly with the coastal

water by one inlet pipe (inlet waters) and the water from each tank

was released by one outlet pipe located in the bottom of the tank

(effluent). The seawater was pumped into the tanks at a continuous

flow of 1,200 L/hr. Therefore, water residence time in the tanks was

about 42 hr. In one of the tanks, 811 ± 125 individuals of the pri-

mary species, the sea anemone Anemonia sulcata, and 93 ± 3 adults

of sea cucumbers with an average weight of 293 g and length of
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24 cm (approximately 80% Holothuria tubulosa and 20% H. forskali)

were included (hereafter designated as +holothurian tank). This tank

had a stocking density of ca. 3 holothurians m−2 and a ratio of ane-

mone to holothurian between 8 and 9. These two species of

holothurians are the most common in the nearby coastal area. In the

other tank only 690 ± 87 individuals of A. sulcata were included

(hereafter designated as—holothurian tank). Sea anemones were

placed on floating plastic boxes in the surface of the tanks and

holothurians were free in the bottom and walls of the tanks. Sea

anemones were fed with about 900–1,800 g of fresh chopped fish,

mainly Scomber scombrus (Chintiroglou & Koukouras, 1992; Van‐
Praët, 1985) twice per week. Anemonia sulcata was selected as the

primary species because is a very palatable species, highly demanded

for gourmet catering in Southern Spain (U. Granada, 2013). More-

over, this species has also a great biotechnological potential (León‐
Palmero et al., 2018; Silva, Andrade, Paiva‐Martins, Valentão, & Per-

eira, 2017). In particular, the company iMareNatural S.L., where this

study was performed, is involved in the study of this species

because this pharmacological potential (https://www.tascmar.eu) and

has also started its commercialization for gourmet catering. Species

diversification in aquaculture is another main goal for a sustainable

aquaculture as well as for environmental conservation and restora-

tion (Diana et al., 2013; Froehlich, Gentry, & Halpern, 2017).

Water samples from each tank were collected biweekly from July

2013 to August 2014. We took the samples from the centre of the

tanks, transferred to sampling bottles and immediately placed on ice

for their transportation to the laboratory. Sampling bottles were pre-

viously cleaned with acid, rinsed with bi‐distillated water and several

times with seawater. Before each sampling, basic parameters such as

temperature (°C), pH, salinity (psu), total dissolved solids and conduc-

tivity (mS cm−1) were measured in the tanks using a multi‐parameter

HANNA probe (HI9828 model). For the total organic carbon (TOC)

samples, we used 40 ml amber EPA vials previously combusted at

500°C. Once in the laboratory (about 1 hour from the tanks), the

samples for dissolved nutrients were filtered through Whatman GF/F

filters and the filtrates were stored at −20°C until analysis. Samples

for bacterial abundance were fixed with 1% paraformaldehyde and

0.05% glutaraldehyde and then immediately stored at −80°C.
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F IGURE 1 Time series of the concentration of (a) ammonium, (b) nitrite, (c) nitrate, and (d) total phosphorus in the inlet waters (white
circles), in the effluent waters of the ‐holothurian tank (grey triangles) and in the effluent waters of the +holothurian tank (black squares) in the
big volume tanks
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2.2 | Nutrient analysis

To determine the concentrations of ammonium, nitrite, nitrate and

total phosphorous (TP) we used the standard methods (APHA,

1992). The dissolved fraction of the nutrients was previously filtered

using Whatman GF/F filters and total nutrients were analyzed from

unfiltered samples. All samples were analyzed by triplicate. To deter-

mine ammonium concentration we used the phenate method (APHA,
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1992) with the Spectroquant® Test Kit (Merck Millipore). Nitrate

concentrations were measured following the ultraviolet spectropho-

tometric method. Briefly, 25 ml‐samples were acidified with 0.5 ml

of hydrochloric acid (1 M), shaked and the absorbance at 220 nm

and 275 nm were measured using 10 cm cuvettes in an UV‐VIS Per-

kin‐Elmer spectrophotometer connected to a computer equipped

with UV Winlab software. The nitrite concentration was determined

spectrophotometrically through the formation of a reddish purple

azo dye produced at pH 2.0 – 2.5 by coupling diazotized sulfanil-

amide with N‐(1‐naftile)‐ethylendiamine dihydrochloride. The concen-

tration of TP was determined spectrophotometrically using the

ascorbic acid technique (Murphy & Riley, 1962).

2.3 | Organic components

We measured total organic carbon (TOC) concentration by a high‐
temperature catalytic oxidation as non‐purgeable organic carbon

using a Shimadzu TOC‐V CSN analyzer. Samples by triplicate were

acidified with hydrochloric acid and purged for 20 min to eliminate

dissolved inorganic carbon. Three to five injections were analyzed

for each sample and the blanks (Milli‐Q water). Standardization of

the instrument was done with potassium hydrogen phthalate (4‐
point calibration curve).

To determine the concentration of particulate organic matter

(POM) we filtered between 1.5 and 2.0 L of water from the tanks

through pre‐weighed and precombusted (500°C for 4 hr) Whatman

GF/F glass fibre filters (0.7 μm nominal pore size). The filters contain-

ing all the solids were dried at 60°C for >24 hr and reweighed to

determine the total mass (mineral +organic matter). Then, the filters

were combusted at 500°C for 6 hr to burn the organic fraction.

Finally, the filters were reweighed again to determine the mineral

residue. POM was obtained after the subtraction of the mineral resi-

due to the total mass.

We determined the concentration of chlorophyll‐a spectrophoto-

metrically after pigment extraction with methanol (APHA, 1992). In

the laboratory, a volume of 2 L of water from the tanks was filtered

through Whatman GF/F filters. The filters were covered with alu-

minum foil and frozen at −20°C until analysis. Pigments were

extracted with methanol during 24 hr at 2–4°C. To obtain the con-

centration of chlorophyll‐a, absorbance at 665 nm was measured

using a spectrophotometer UV/VIS Perkin Elmer and, if needed, cor-

rected for turbidity using the absorption at 750 nm.

We determined bacterial abundance by triplicate using flow

cytometry (Gasol & del Giorgio, 2000) with a FACScalibur Becton

Dickinson cytometer equipped with a laser emitting at 488 nm. Sam-

ples were stained for 10 min in the dark with a DMSO diluted Syber

Green I (Molecular Probes) at 10 μM final concentration. A volume

of 10–20 µl of a solution of yellow‐green 0.92 μm Polysciences latex

beads was added as an internal standard. Bacterial abundance was

detected by their signature in bivariate plots of Side scatter (SSC)

versus FL1 (green fluorescence). Samples were acquired in log mode

and run at low speed (for 2 min at 12 µl/min) for bacterial abun-

dance until ca. 105 events. Dilution of the samples was performed

for events higher than 800 cells s−1. Data were processed using Cell

quest software.

Transparent exopolymer particles (TEP), on the one hand, are

biofilm precursors (Bar‐Zeev, Berman‐Frank, Girshevitz, & Berman,

2012); which can affect recirculation systems and tank hygiene

(Joyce & Utting, 2015). On the other, TEP can be considered a food

source for marine invertebrates as well a potential source of gut

microbiota (Joyce & Utting, 2015; Passow, 2002a). We determined

TEP concentration using the alcian blue method (Passow & All-

dredge, 1995) with minor modifications after Mazuecos, Ortega‐
Retuerta, and Reche (2012). Briefly, water samples (100–250 ml),

previously fixed with formaldehyde (1% final concentration), were fil-

tered through 0.4 µm polycarbonate filters. Then, the filters were

dyed with 0.5 ml of alcian blue (0.02%) and after 30 s filtered again.

The filters were soaked in 80% sulphuric acid (5 ml) for 3 hr and the

solution was measured at 787 nm in a UV/VIS Perkin Elmer spec-

trophotometer. Stained filters without sample were used as blanks.

Alcian blue absorption was calibrated using a solution of xanthan

gum (XG) that was homogenized using a tissue grinder and measured

TABLE 1 Results of paired t‐tests (for normally distributed
variables) and Wilcoxon matched pairs test (for not normally
distributed variables) between the inlet waters and the effluents
from the +holothurian tank and −holothurian tank

Statistical Analysis
t or
z

p‐
value

Inlet waters versus +holothurian effluent

Ammonium Wilcoxon matched

pairs test

0.74 0.4537

Nitrite Paired t test 0.58 0.5639

Nitrate Paired t test 2.19 0.037

Total phosphorus Paired t test 0.64 0.5253

Total organic carbon Paired t test 0.03 0.9691

Particulate organic matter Paired t test 0.19 0.8443

Transparent exopolymer

particles

Paired t test 1.51 0.1439

Chlorophyll‐a Paired t test 0.61 0.5455

Bacteria abundance Paired t test 1.49 0.1468

Inlet waters versus −holothurian effluent

Ammonium Wilcoxon matched

pairs test

3.37 0.0008

Nitrite Wilcoxon matched

pairs test

1.00 0.3130

Nitrate Paired t test 0.60 0.0058

Total phosphorus Paired t test 1.93 0.0644

Total organic carbon Paired t test 6.17 0.0000

Particulate organic matter Paired t test 2.05 0.0493

Transparent exopolymer

particles

Paired t test 5.43 0.0000

Chlorophyll‐a Paired t test 1.41 0.1737

Bacteria abundance Paired t test 2.97 0.0070
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by weight. Therefore, TEP concentration was expressed in μg XG eq

L−1.

2.4 | Short‐term experiments

To corroborate the results obtained in the time‐series, we performed

three short‐term (3 days) experiments manipulating the presence of

holothurians under similar conditions to the big tanks but consider-

ing only the variables that changed in the time‐series. Each experi-

ment was carried out in seven tanks of 300 litres that contained a

floating plastic box with 80 individuals of A. sulcata per tank and

consisted of two treatments: +holothurians (+H) and −holothurians

(−H). At the initial time, in three of the tanks we included 10 individ-

uals of H. tubulosa in each tank (i.e. a ratio anemone to holothurian

of eight). These three tanks are the replicates of the +holothurians

treatment. The other four tanks only contained the 80 individuals of

A. sulcata and represent the replicates of the −holothurians treat-

ment. The experiment one was carried out from 6th to 9th October

2017, the experiment two from 27th to 30th October 2017, and the

experiment three from 3rd to 6th November 2017. During the dura-

tion of each experiment the anemones were not fed to control the

net effect of holothurian activity and avoid interactions with the

food supply. At the initial and final time we took samples for nitrate,

total phosphorus, bacteria and transparent exopolymer particles. To

analyze the samples we followed the same procedures used in the

time‐series.

2.5 | Statistical analyses

To compare the tank with holothurians versus the tank without

holothurians over time we performed paired t tests for normally‐dis-
tributed variables and Wilcoxon matched pairs tests for not nor-

mally‐distributed variables using the software Statistica (V8) and R

3.2.2. These statistical analyses ameliorate the problem of temporal

pseudoreplication in this type of studies (Millar & Anderson, 2004).

These paired tests have been commonly used in marine sciences to

compare changes over time among different sites (e.g. Ault & John-

son, 1998; Greenstreet & Hall, 1996; Rodney & Paynter, 2006). In
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the short‐term experiments, to determine the statistical significance

of the presence of holothurians we performed analysis of variance

(ANOVA) to compare the tanks with holothurians (+H treatment)

with the tanks without holothurians (−H treatment) using Statistica

software (V8).

3 | RESULTS

3.1 | Time‐series in the big‐volume tanks

During the study period, in the inlet waters, we found pH values

that ranged from 7.71 to 8.31, temperature values from 13.58 to

25.58 °C, salinity from 35.8 to 41.6 psu, conductivity between 52.28

and 61.96 mS cm−1and total dissolved solids from 18.26 to 30.84

ppt.

Ammonium concentration in the inlet waters ranged from 0.006

to 0.038 μmol‐N L−1 with values usually below 0.025 μmol‐N L−1

(Figure 1a, white circles). However, in the effluent of the −holothur-

ian tank we detected punctual higher values during fall 2013 and

winter 2014 reaching concentrations up to 0.162 μmol‐N L−1 (Fig-

ure 1a, grey triangles). The ammonium concentration in the effluent

of the +holothurian tank (Figure 1a, black squares) was consistently

lower than in effluent of the −holothurian tank (Figure 1a, grey trian-

gles). No relevant changes in the nitrite concentration between the

F IGURE 4 Median (line), the 25‐75% percentile (box), the non‐outliers range (whisker), and outliers (dots) of the concentration of (a) total
organic carbon, (b) particle organic matter, (c) transparent exopolymer particles, (d) chlorophyll‐a (a), and (e) bacterial abundance in the inlet
waters (white box), in the +holothurian tank and effluent (black boxes), and in the −holothurian tank and effluent (grey boxes)

TABLE 2 Results of the analysis
of variance (ANOVA) in the three
experiments performed to compare
the nitrate, bacterial abundance,
transparent exopolymer particles,
in the treatments with holothurians
(+H) versus the treatments without
holothurians (−H) at the initial and
the final times

Experiment # 1 Experiment # 2 Experiment # 3

F p‐value F p‐value F p‐value

Initial time

Nitrate 2.71 0.116 3 0.125 384.2 0.0831

Bacterial abundance 3.04 0.097 2.958 0.101 0.550 0.467

TEP 17.84 0.118 8.4 0.134 0.45 0.516

Final time

Nitrate 605.93 <0.001 354.4 <0.001 174.81 <0.001

Bacterial abundance 7.06 0.015 89.366 <0.001 83.221 <0.001

TEP 1,162.64 <0.001 5,158.59 0.00 6,916.2 0.00
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inlet waters (white circles) and the effluents of both tanks (grey tri-

angles and black squares) were observed (Figure 1b). The nitrate

concentration was usually lower in the effluent of +holothurian tank

(Figure 1c, black squares) than in the effluent of −holothurian tank

(Figure 1c, grey triangles) and in the inlet waters (Figure 1c withe cir-

cles). The nitrate concentration in the inlet waters ranged from 3.45

to 26.91 μmol‐N L−1. The maximum value of nitrate in the inlet

waters was observed in the spring of 2014. Total phosphorus (TP)

F IGURE 5 Changes in the
concentration of nitrates, bacterial
abundance and transparent exopolymer
particles in the short‐term experiments.
Mean (bars) and the standard deviations
(whiskers) of the replicates of (a) nitrates,
(b) bacterial abundance and (c) transparent
exopolymer particles in the treatments
with holothurians (+H) and without
holothurians (−H) at the initial and final
times. Black bars represent the treatment
with holothurians and grey bars represent
the treatment without holothurians.
Asterisks show the statistically significant
differences at the final time of the
experiments (more details in Table 2)
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ranged from 0.039 to 1.157 μmol‐P L−1 in the inlet waters. In fall

and spring, total phosphorus (TP) was higher in the inlet waters (Fig-

ure 1d, white circles) than in the effluents of both tanks (Figure 1d,

black squares and grey triangles).

Total organic carbon (TOC) ranged from 0.05 to 0.43 mg C L−1

in the inlet waters (Figure 2a, white circles) similar to the values

measured in the effluent of +holothurian tank from 0.05 to 0.51 mg

C L−1 (Figure 2a, black squares). However, the values in the effluent

of ‐holothurian tank were higher ranging from 0.12 to 0.63 mg C L−1

(Figure 2a, grey triangles). The maximum values were reached in all

cases during spring of 2014, particularly in the −holothurian effluent

(Figure 2a). In general, the concentration of particulate organic mat-

ter (POM) in the effluent of the −holothurian tank (Figure 2b, grey

triangles) was higher than in the inlet waters (Figure 2b, white cir-

cles) and in the effluent of +holothurian tank (Figure 2b, black

squares). The concentration of transparent exopolymer particles

(TEP) ranged from 32 to 270 μg XG eq. L−1 in the inlet waters (Fig-

ure 2c, white circles) and from 22 to 321 μg XG eq. L−1 in the efflu-

ent of +holothurian tank (Figure 2c, black squares) and from 35 to

522 μg XG eq. L−1 in the effluent of ‐holothurian tank (Figure 2c,

grey triangles). Chlorophyll‐a ranged one order of magnitude in the

inlet waters from 0.27 to 2.62 μg/l (Figure 2d, white circles) and

from 0.20 to 2.48 μg/l in the effluent of +holothurian tank (Figure 2d,

black squares) and from 0.29 to 2.31 μg/L in the effluent of

−holothurian tank (Figure 2d, grey triangles). Bacteria abundance ran-

ged from 0.5 to 20.7 × 106 cell ml−1 in the inlet waters, (Figure 2e,

white circles) and from 1.1 to 20.2 × 106 cell ml−1 in the effluent of

+holothurian tank (Figure 2e, black squares) and from 2.3 to 17.6

× 106 cell ml−1 in the effluent of ‐holothurian tank (Figure 2e, grey

triangles).

To determine if the holothurians produce significant changes in

the water quality of the tank and its effluent we compared the tanks

using paired t tests or Wilcoxon matched‐pairs tests over time

(Table 1). We did not obtain significant differences between the inlet

(white box) and the +holothurian tank waters and its corresponding

effluent (black boxes) neither for ammonium (Figure 3a), nitrite (Fig-

ure 3b), nitrate (Figure 3c) nor TP (Figure 3d) (Table 1). By contrast,

we obtained significant differences between the inlet waters and

−holothurian effluent waters (grey boxes) for ammonium (Figure 3a)

and nitrate (Figure 3c) (Table 1). It is particularly remarkable the

increase of ammonium in the −holothurian tank and in its effluent in

comparison with the inlet waters and the +holothurian tank and its

effluent (Figure 3a, grey boxes).

We did not find statistically significant differences between the

inlet waters and the +holothurian effluent waters for TOC, POM,

TEP, chlorophyll‐a and bacterial abundance (Table 1). By contrast,

the ‐holothurian effluent waters showed significantly higher concen-

trations than the inlet waters of TOC (Figure 4a, grey boxes), POM

(Figure 4b, grey boxes) and TEP (Figure 4c, grey boxes) (Table 1). It

is particularly remarkable the higher values of TEP in the −holothur-

ian tank and in its effluent waters (Figure 4c, grey boxes) than the

values in the inlet waters (Figure 4c, white box) and in the +holothur-

ian tank and its effluent waters (Figure 4c, black boxes). We also

found significantly higher abundance of bacteria in the −holothurian

effluent waters (Figure 4e, grey boxes) than in the inlet waters (Fig-

ure 4e, white box) and in the+holothurian tank and its effluent

waters (Figure 4e, black boxes) (Table 1).

3.2 | Short‐term experiments

In the experiments, at the initial time, we did not observe significant

differences in the concentration of nitrate, TEP nor bacterial abun-

dance between both treatments (+H and −H) indicating that the

experiments started with identical conditions (Table 2, Figure 5 initial

times). By contrast, after three days of the introduction of holothuri-

ans (i.e. at the final times) we found a statistically significant reduc-

tion in the concentration of nitrates (Figure 5a), bacterial abundance

(Figure 5b) and transparent exopolymer particles (Figure 5c) in treat-

ment with holothurians (+H) in comparison with the treatment with-

out holothurians (−H) (Table 2). This reduction was particularly

elevated for the case of TEP concentration (Figure 5c).

4 | DISCUSSION

Sea cucumbers are considered highly marketable species both as

food and a pharmaceutical resource (Farouk, 2007; Gowda et al.,

2008; León‐Palmero et al., 2018; Nelson et al., 2012a; Nelson,

MacDonald, & Robinson, 2012b; Silchenko et al., 2005). Since

holothurians are detritus‐feeders, they are also used as an extractive

species in integrated multitrophic aquaculture (Yokoyama, 2013;

Zamora, Yuan, Carton, & Slater, 2016). In fact, here we showed that

the introduction of holothurians in tanks with sea anemones reduced

significantly the concentration of dissolved nitrogen, transparent

exopolymer particles and bacterial abundance. Therefore, this envi-

ronmental potential of holothurians, besides their marketable value,

should be also considered for the development of sustainable aqua-

culture installations.

The reduction in the concentration of ammonium and nitrates by

holothurians was likely indirect through the interaction bacteria‐de-
tritus. We did not observe significant changes of dissolved nitrogen

in the tank with holothurians (Table 1, Figure 3a,b black bars),

whereas the concentration of ammonium and nitrate was signifi-

cantly higher in the tank without holothurians in comparison with

the tank with holothurians consistently over time (Table 1, Figure 3a,

b grey bars). Considering that the concentration of TOC, POM, TEP

and the abundance of bacteria were significantly higher (Table 1) in

the −holothurian tank (Figure 4 grey bars) than in the +holothurian

tank (Figure 4 black bars), we can assume that bacterial mineraliza-

tion of detritus and organic matter was likely higher in the

−holothurian tank than in the +holothurian tank. This additional

microbial mineralization of detritus in the –holothurian tank might

eventually have increased the concentration of mineral nutrients

such as ammonium and nitrate in the tank. In the short‐term experi-

ments, we also observed at the final times statistically significant

higher values of the concentration of nitrates in the −H treatment

(Figure 5a grey bars) than in the +H treatment (Figure 5a black bars)
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(Table 2) suggesting an increase in the mineralization process in the

−H treatment during the experimental time (3 days) that was similar

to the water renovation time in the big tanks. Another alternative

(non‐exclusive) explanation for nitrogen reduction is the direct assim-

ilation of dissolved nitrogen by symbiotic bacteria living in the sea

cucumbers tissues. Recently, Brothers, Lee, and Nestler (2015)

demonstrated, using stable isotopes, the uptake of free amino acids

in several tissues of the sea cucumber Parastichopus californicus. The

assimilation of amino acids and other nutrients have been associated

to the presence of subcuticular symbiotic bacteria in sea cucumber

species such as Stichopus mollis (Lawrence, O'Toole, Taylor, & Davy,

2010) and deep‐sea holothurians (Robert, Billett, McCartney, &

Hayes, 1991). More detailed studies on the role of these symbiotic

bacteria on dissolved nutrients assimilation by holothurian are

needed to determine its relevance. Therefore, detritus consumption

is not the unique way to obtain energy in the sea cucumbers. They

can also absorb dissolved organic matter (Brothers et al., 2015;

Sadeghi‐Nassaj, Catalá, Álvarez, & Reche, 2018), ingest mucus aggre-

gates and microorganisms (Navarro, García‐Sanz, Barrio, & Tuya,

2013; Tamura & Tsuchia, 2011).

Several authors (e.g. Amon & Herndl, 1991; Coulon & Jangoux,

1993) have reported that H. tubulosa is a selective deposit feeder

containing higher concentrations of particulate organic matter, total

particulate carbohydrates and bacteria biomass in its foregut in com-

parison with their concentrations in the surrounding sediment. Most

holothurians have a digestive tract specialized for the assimilation of

organic matter from sediments (Roberts, Gebruk, Levin, & Manship,

2000). Indeed, they consume sediments particularly enriched in

organic matter selecting bacteria, pigments, chlorophyll, and fungi

(Navarro et al., 2013; Paltzat, Pearce, Barnes, & McKinley, 2008;

Yokoyama, 2013, 2015 ), although there are also species with a les-

ser selective capacity (Slater, Jeffs, & Sewell, 2011). The non‐selec-
tive consumption usually appears in species living in benthic zones

on surface sediments with low nutritional value (Slater et al., 2011;

Zamora & Jeffs, 2011). In our study, we observed a significant

decrease in the concentration of TOC, POM and TEP in the tank

that included holothurians in comparison with the tank without

holothurians over time (Table 1). These results suggest a net con-

sumption of most particulate organic compounds by the study

holothurians. This consumption was particularly remarkable for the

case of transparent exopolymer particles (Table 1, Figure 4c).

Transparent exopolymer particles (TEP) have strong adhesive and

polymerization forces being biofilm precursors and key substrates for

microbial colonization (Bar‐Zeev et al., 2012). Both phytoplankton

and bacteria release TEP precursors and form aggregates (Iuculano,

Mazuecos, Reche, & Agustí, 2017; Ortega‐Retuerta, Duarte, & Reche,

2010; Passow, 2002b). Recently, Joyce and Utting (2015) have

emphasized the complex role of TEP in hatcheries. On the one hand,

TEP can be considered as food for invertebrates and fish larvae and,

in the other, they can be colonized by commensal bacteria and

sequester micronutrients and toxins, which can be essential in the

hygiene of hatcheries. In our study, we observed a very relevant

reduction in the TEP concentration in the tanks containing

holothurians both in the time‐series and in the short‐term experi-

ments (Tables 1 and 2, Figure 4c and Figure 5c), suggesting that TEP

were ingested as a food source by the study holothurians. In fact,

Wotton (2005, 2011 ) observed that the reduction of TEP in the

water column is mostly due to marine invertebrate. Since bacteria

are part of the biofilms and TEP aggregates (Bar‐Zeev et al., 2012),

TEP ingestion by holothurian could have also implications for the

formation and keeping of their gut microbiome (Joyce & Utting,

2015). Hence, holothurians could have an excellent role regulating

biofilms in aquaculture tanks.

The importance of chlorophyll‐a, as a surrogate of rich organic

food, has been highlighted in previous studies (Hudson, Wigham,

Solan, & Rosenberg, 2005; Uthicke, 2001; Uthicke & Karez, 1999).

However, we did not find significant differences in the concentration

of chlorophyll‐a between the tank containing holothurians and the

tank without holothurians over time (Table 1, Figure 4d). Bacteria

are also considered a food source for holothurians (Amon & Herndl,

1991; Moriarty, 1982; Moriarty, Pollard, Hunt, Moriarty, & Wassen-

berg, 1985). Unlike chlorophyll‐a, we found significant differences in

the abundance of bacteria between the −holothurian effluent and

the inlet waters (Table 1, Figure 4e). The bacterial abundance in the

+holothurian tank was lower than in the −holothurian tank suggesting

a net consumption of bacteria by holothurians. In fact, in the short‐
term experiments, we found statistically significant lower values in

the abundance of bacteria in the +H treatment with respect the −H

treatment (Table 2, Figure 5b). Therefore, holothurians appear to

control bacterial populations in term of days. This bacterial consump-

tion by holothurians could have also beneficial consequences to

avoid pathogen bacterial outbreaks such as, for instance, Vibrio sp.

that is a serious problem in aquaculture (Roux et al., 2015).

5 | CONCLUSIONS

Sea cucumbers in aquaculture tanks reduce the load of nitrogen,

total organic carbon, particulate organic matter, transparent

exopolymer particles and bacteria in tanks and effluents of aqua-

culture. Therefore, they are a relevant extractive species both for

mineral nutrients and particulate organic components. Nitrate

reduction in aquaculture effluents can be beneficial to reduce

eutrophication problems associated with aquaculture installations.

It is also particularly remarkable the TEP and bacteria consumption

by the study holothurians. This consumption can be relevant in

the maintenance of the tank hygiene and in the control of patho-

genic bacterial outbreaks. This extractive facet of the holothurians

confers them a high environmental value in multitrophic or poly‐
culture aquaculture beyond their economical and pharmaceutical

intrinsic value.
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