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Turnover time of fluorescent dissolved organic
matter in the dark global ocean
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Marine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on
Earth. In the dark ocean (>200m), most of this carbon is refractory DOM. This refractory
DOM, largely produced during microbial mineralization of organic matter, includes humic-like
substances generated in situ and detectable by fluorescence spectroscopy. Here we show two
ubiquitous humic-like fluorophores with turnover times of 435 + 41 and 610 + 55 years, which
persist significantly longer than the ~ 350 years that the dark global ocean takes to renew. In
parallel, decay of a tyrosine-like fluorophore with a turnover time of 379 £103 years is also
detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM
that is preserved at centennial timescales and could represent a mechanism of carbon
sequestration (humic-like fraction) and the decaying DOM injected into the dark global
ocean, where it decreases at centennial timescales (tyrosine-like fraction).
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he biological pump has long been recognized as a
mechanism to remove CO, from the atmosphere, through
photosynthesis and export of particulate and dissolved
organic matter (DOM) to the deep ocean!. More recently,
the transformation of biologically labile organic matter into
refractory (long lifetime in the dark ocean)? compounds by
prokaryotic activity has been termed the ‘microbial carbon pump’
and may also constitute an effective mechanism to accumulate
reduced carbon in the dark ocean®*. Given the large pool
of refractory DOM (RDOM) in the oceans (~656pg C)?,
understanding its generation, transformation and role in carbon
sequestration is crucial in regards to understanding present and
future CO, emission scenarios.
Some components of the marine RDOM pool absorb light and
a fraction of them also emit fluorescence (fluorescent DOM,
FDOM)>0, These optical properties are used as tracers for
circulation and biogeochemical processes in the dark ocean’.
Here we obtain the distribution of FDOM in the ocean interior
by measuring fluorescence intensities scanned over a range of
excitation/emission wavelengths during the Spanish Malaspina
2010 circumnavigation of the globe (Fig. 1). Discrete fluorescent
fractions can be discriminated from the measured spectra by
applying parallel factor analysis (PARAFAC)® (see Methods).
Four fluorescent components are isolated from the whole data set
and appear to be ubiquitous and common in the dark global
ocean™”. Two components (C1 and C2) have a broad excitation
and emission spectra, with excitation and emission maxima in the
ultraviolet and visible region, respectively. These are traditionally
referred to as humic-like components, which accumulate and
have turnover times of 435 £ 41 and 610 + 55 years, respectively.
These turnover times are longer than the ~350 years that the
dark (>200m) global ocean takes to renew’. The two other
components (C3 and C4) have narrower spectra with excitation
and emission maxima below 350nm and are similar to the
spectra of tryptophan and tyrosine, respectively'®. The dark
global ocean appears to be a sink for fluorescent tyrosine-like
(C4) component and has a turnover time of 379 + 103 years that
is comparable to turnover time of DOC pool (estimated in 370
years!!). Thus, we propose that the fluorescent fractions of DOM
are suitable proxies for determining the cycling of the RDOM that
produces (humic-like) and decays (tyrosine-like) in the dark
ocean at centennial timescales.

Results

Water masses across the circumnavigation. The water mass
composition of each water sample was described through the
mixing of prescribed water types (WT) with a multi-parameter
analysis (see Methods). We identified 22 WT (see Table 1) with
12 of them representing 90% of the total volume of water samples
collected during the global cruise (Fig. 2). Circumpolar Deep
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Figure 1| Cruise track of the Malaspina 2010 circumnavigation. The
cruise departed from Cartagena (Spain) on 17 December 2010 and returned
to the same port on 15 July 2011, and was divided into seven legs.
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Water (CDW) was widely distributed in the Indian and Pacific
Oceans accounting for up to 25.6% of the total volume sampled.
North Atlantic Deep Water of 2.0°C (NADW,,) and 4.6°C
(NADW,¢) accounted 21.4% of the total volume and mostly
located in the Atlantic basin; Antarctic Intermediate Water of
3.1°C (AAIW3,) and 5.0 °C (AAIW5 ) accounted for 7.6% of the
total volume and spread out through the South Atlantic and
Indian basins; and North Pacific Intermediate Water accounted
for 5.7% of the total volume sampled.

Global distribution of fluorescent components. The maximum
fluorescence intensity (Fmax) of the two humic-like components
(C1 and C2) obtained during the Malaspina circumnavigation
showed a global distribution similar to the apparent oxygen
utilization (AOU; Fig. 3a-c), reaching their maxima in the
Eastern North Pacific central and intermediate waters and their
minima in the Indian Ocean central waters. In contrast, this
global trend with AOU was not evident for the two amino-acid-
like components (C3 and C4; Fig. 3d,e).

Relationships between the archetypal AOU and fluorophores.
Combining the outputs from the water mass, AOU and fluores-
cence analyses, we calculated WT proportion-weighted average
values, hereafter referred to as archetypal, for the AOU and the
fluorescence intensities of the four components (see Methods).
Archetypal values retain the variability associated with the initial
concentrations at the site where each WT is defined and its
transformation by basin-scale mineralization processes up to the
study site!2. Archetypal concentrations explained 81, 77, 75, 24
and 26% of the total variability of AOU, Cl1, C2, C3 and C4,
respectively (Table 1).

In Fig. 4, we show the measured maximum fluorescence
intensity (grey dots), archetypal values for each WT (white dots)
and archetypal values for each sample (black dots) for the
components Cl, C2, C3 and C4 (Fig. 4a-d, respectively). We
obtained direct relationships between the archetypal humic-like
components (Cl1 and C2) and archetypal AOU (Fig. 4a,b)
suggesting a net production of these components in parallel with
the water mass ageing. The relatively high archetypal fluorescence
of C1 (blue dots in Fig. 4a) for North Atlantic Deep Water
(NADW) is related to the high load of terrestrial fluorescent
materials transported by the Arctic®!3!4 rivers, whereas the cause
of the high value for the Mediterranean water (MW) is due to the
low proportion of this water mass (9 +14%) compared to the
proportion of NADW (76 £ 33%) in the same sample. Therefore,
it is expectable that the archetypal concentration of Cl1 that our
data set produces for the MW should be close to the NADW
archetype. For C2, the North Pacific Subtropical Mode Water
(STMWyp; green dot in Fig. 4b) also departed from the general
archetypal C2-AOU trend. Archetypal C1 and C2 can be
modelled with archetypal AOU values using power functions
(Fig. 4a,b). Given that the high fluorescence of NADW and MW
in Cl and of STMWyp in C2 is not related to ageing, these
water masses were excluded from their corresponding regression
models. It is noticeable that the power factor for C1 (0.51 +0.04)
is almost twice than for C2 (0.31 £ 0.04), indicating a higher C1
production rate per unit of consumed oxygen. Furthermore,
in hypoxic waters (dissolved oxygen concentrations <60 UM
(ref. 15); orange dots in Fig. 4ab), Cl1 and C2 also behave
differently; whereas C1 production was enhanced, C2 did not
change substantially.

In contrast, we do not observe a significant relationship
between the archetypal values of the tryptophan-like fluorescence
component (C3) and AOU (R2=0.001, n =22, P=0.88; Fig. 4c).
This lack of correlation is caused by the low archetypal
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Table 1 | Archetypal values of the depth (Z;), AOU (AOUi) and the four fluorescent components (Fmax1i, Fmax2i, Fmax3i and

Fmax4i) for the different WTs intercepted during the Malaspina 2010 circumnavigation.

Source water type Acronym VOL; Z; (m) AOU; Fmax1; Fmax2; Fmax3; Fmax4;
(%) (umolkg™ ™ (x10"3RU) (x10 3RU) (x10 3RU) (x10 3RU)

Eighteen Degrees Water EDW 0.7 264 £ 20 46+ 8 82106 6.9+0.7 6.0t£14 6.4+19

Eastern North Atlantic Central ENACW;, 3.7 641140 nax7v M6+£0.2 93101 53106 50+ 05

Water (12°C)

Eastern North Atlantic Central ~ ENACW;s5 1.8 327+25 6318 91+0.4 8.0x04 58%09 6.6+ 0.9

Water (15°C)

Equatorial Atlantic Central 13EqAtl 1.6 427 £37 61£7 74103 6.9+0.3 49+0.8 6.8+0.9

Water (13°C)

South Atlantic Central Water SACW;, 2.6 303+26 M0 +16 93106 84+0.5 59%0.8 7.8+0.7

(12°C)

South Atlantic Central Water SACW;g 1.5 21+M 38%12 6.6+ 0.5 6.6+0.6 57+12 83%09

(18°C)

Indian Subtropical Mode Water ~ STMW, 0.8 259135 26+3 54+02 57%0.2 35104 73%0.8

Indian Central Water (13°C) ICWi3 43 395+28 322 55+£0.1 54101 32+0.2 58+04

South Pacific Subtropical Mode =~ STMWsp 0.2 277+ 84 49+ 6.2+04 6.2+0.3 2.8+0.1 6.0+11

Water

South Pacific Central Water SPCW5q 0.5 269+ 26 70£15 6.5+0.5 7.8+0.5 29103 53%+0.8

(20°C)

Equatorial Pacific Central Water  13EgPac 5.7 483+ 35 231£10 145+0.6 10.8+0.3 45+0.3 48+0.4

(13°C)

North Pacific Central Mode CMWyp 33 253113 234 £10 141+ 0.5 120+£0.2 53+03 59105

Water (12°C)

North Pacific Subtropical Mode =~ STMW\yp 0.2 207 £36 m«+é6 9.0+£04 n.8x17 6.3%16 6.810.1

Water (16 °C)

Mediterranean Water MW 0.4 1276 +354 84+9 11.8+0.8 9.4+03 45109 43115

Sub-Antarctic Mode Water SAMW 7.9 719+ 42 726 69103 59+0.2 27101 44+£0.2

Antarctic Intermediate Water AAIW;3, 4.4 1317 £108 1345 10.5+0.4 7.8+0.2 31+£0.3 3.8104

(3.1°C)

Antarctic Intermediate Water AAIW; o 3.2 677 £36 128+8 10104 81+£0.3 52+0.8 6.1+£0.6

(5.0°0)

North Pacific Intermediate NPIW 57 671165 255+6 16.4+0.4 M.4+£0.2 43%0.2 40+£03

Water

Circumpolar Deep Water CDWi6 25,6 2412t76 183+4 14.6+0.2 9.9+0.1 3.6+0.1 34+£02

North Atlantic Deep Water NADW,o 13.6 3279166 88+2 13.3+£0.1 10.1+£0.1 62104 61104

(2°C)

North Atlantic Deep Water NADW ¢ 7.8 1582+99 103+ 4 125+0.2 9.6+0.2 62105 63104

(4.6°C)

Antarctic Bottom Water AABW 4.4 3780164 149+6 13.4+0.2 9.6£0.1 3703 39104

R? (N; versus <N;>) 0.81 0.77 0.75 024 0.26

s.d. of the estimate 1.8 1.0 2.4 2.6

Analytical error 0.09 0.06 0n 0.17

AQU, apparent oxygen utilization; WT, water types.

%VOL; is the contribution of each WT to the total volume of water collected along the cruise and R? is the determination coefficient.

fluorescence (<4 x 1073 RU) of the relatively young
(AOU <75 pmol kg~ 1y central waters of the Indian and South
Pacific oceans (ICW;3, STMW,, SAMW, SPCW,, and STMWgp;
Table 1; purple dots in Fig. 4c). However, such low archetypal
values are not observed in the tyrosine-like component (C4),
leading to a weak but significant inverse power relationship with
AOU (Fig. 4d). The archetypal tyrosine-like fluorescence of the
aged Central waters (AOU > 200 pmolkg ~!) of the Equatorial
(13EqPac) and Central North Pacific (CMWyp) exceeded the
expected value from their AOU (cyan dots in Fig. 4d). These two
WT were excluded from the regression model.

Net FDOM production and turnover times. On the basis of the
relationships observed between the archetypal fluorescence
intensity of three out of four fluorescence components (C1, C2
and C4) and AOU, we calculated the net production rate of each
component, termed net FDOM production (NFP). A positive
value of NFP indicates net production, as for the case of the
humic-like components C1 and C2, and a negative value indicates

net decay, as for the case of the amino-acid-like C4. The NFP
of each component was calculated by multiplying the WT
proportion-weighted average fluorescence production values
per unit of AOU by the oxygen consumption rate (OCR) for the
dark ocean (see Methods). Here we have used a conservative
OCR estimate of 0.827 pmol O, per year!®. The net humic-like
fluorescence production rate obtained was 2.8+0.2x 10>
Raman units per year (RU per year) for C1 and 1.5+0.1 x 107
RU per year for C2, whereas C4 was consumed at a net rate of
—1.3%0.2 x 10~ ° RU per year in the dark global ocean.
Turnover times of components C1, C2 and C4 were calculated
dividing the WT weighted-average fluorescence values of the dark
global ocean by its corresponding NFP rate (see Methods). These
values represent the time required to produce (Cl, C2) or
consume (C4) a fluorescence signal of the same intensity than the
actual fluorescence of the dark ocean. The resulting turnover of
C2, 610 * 55 years, was significantly longer than the turnover of
Cl, 4351 41 years, and both exceeded the turnover times of the
bulk DOC pool—estimated in 370 years'!—and the terrestrial
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Figure 2 | Proportions of the main WT intercepted during Malaspina 2010. The percentages represent the proportion of the total volume of water
sampled during the cruise that corresponds to each WT. Here the 12 most abundant WT are presented. Note that the depth range starts at 200 m.

For more details see Table 1.

DOC in the open ocean—estimated in <100 years!’—as well as
the renewal time of the dark ocean (water depths >200m)—
estimated in 345 years’. Conversely, the turnover time
of the tyrosine-like component C4 in 379+103 years was
compatible with the turnover time of the bulk DOC.

Discussion

The global pattern in the dark ocean of an increase in the humic-
like components concomitant to water mass ageing (high AOU
values) has been previously reported>®!819, Although it has been
recently hypothesized that this relationship could also be caused
by further transformations of terrestrial humic-like materials in
the open ocean?’, culture experiments have unequivocally
demonstrated that these materials can be produced in situ in
the oceans®!. In fact, we observe positive and significant
relationships between the archetypes of both humic-like
components (C1 and C2) and the AOU (Fig. 4a,b). The higher
C1 production rate per unit of consumed oxygen in comparison
with C2 could be related to different mechanisms of production®
that might be linked to the phylogenetic nature of producers
(bacteria, archaea or eukaryal)22 and/or the sensitivity to
environmental oxygen concentration.

The particularly high archetypal fluorescence of C1 for North
Atlantic Deep Water (NADW) has been previously described and
appears to be clearly related to the high load of FDOM of
terrestrial origin transported from the Arctic rivers to the North
Atlantic Ocean®!>!* with a relevant proportion of unaltered high
molecular weight lignin?3. However, the cause of the high C2
signature for the North Pacific Subtropical Mode Water has not
been previously reported. We hypothesize that it could be related
to intense rainfall south of the Kuroshio extension where these
water mass is formed??, since it is known that rainwater is
particularly enriched in these fluorescent compounds®>?® and
this WT is very shallow (archetypal depth =277 + 84 m; Table 1),
which means that rainwater would dilute in a few tenths of
metres during formation of that warm water mass. Indeed, lignin-
derived phenols, highly modified by photo-oxidation, have been
found in dissolved and submicron particles suspended in the
North Pacific Subtropical Mode Water, suggesting an aerosol
source for these fluorescent materials?’. The high archetypal
tyrosine-like fluorescence (C4) of the aged Central waters
(AOU>200umolkg ~!) of the Equatorial (13EqPac) and
Central North Pacific (CMWyp) might be due also to both WT

4

that occupy shallow layers (archetypal depths 253 +13m for
CMWyp and 483 +35m for 13EqPac; Table 1), where protein-
like fluorescence is higher because of the proximity to the
epipelagic waters, where these materials are usually produced®.

The turnover times of the fluorescent materials (timescale of
centuries) are of the same order of magnitude of the turnover
time of the bulk DOC!!, but an order of magnitude faster than
the apparent age of the ocean DOC as derived from 4C
measurements (timescale of millennia)?. However, it should be
noted that mean age, derived from '*C involved by nuclear tests,
is not homologous with turnover time (mean transit time),
derived from total reservoir and fluxes entering/leaving the
Ireservoir.

It is remarkable that the observed decrease in the tyrosine-like
fluorescence in the dark ocean is at centennial timescales. It has
been reported that the turnover of these fluorophores in the
surface ocean is on a timescale of days®?%, but this long-term
decline in tyrosine-like fluorescence in the dark global ocean,
coupled to water mass ageing, has never been reported. We can
hypothesize that a minor fraction of the tyrosine-like fluorescence
is processed on the scale of centuries, whereas the bulk of the
signal has a turnover time on the order of days to weeks.
Furthermore, this apparent discrepancy could also be related to
the different turnover of the set of compounds that are
represented by this fluorescence signature?’.

We conclude that humic-like fluorescence (C1 and C2) reveals
a suitable marker of the production of optically active RDOM
with turnover times of 400-600 years. Using the oceans as an
incubator, our measurements indicate that the in situ microbial
production of fluorescent humic-like materials in the dark global
ocean is a sink of reduced carbon in the timescale of hundreds
of years. Conversely, the turnover time of the tyrosine-like
component (C4) was compatible with the turnover time of the
bulk DOC and both decline with water mass ageing. This
coincidence between the turnover times of the bulk DOC pool
and the tyrosine-like component could also have applications for
tracing long-term DOC reactivity in the dark ocean.

Methods

Sample collection. A total of 147 stations were sampled from 40°S to 34°N in
the Atlantic, Indian and Pacific Oceans (Malaspina 2010 Expedition, from
December 2010 to July 2011). Vertical profiles of salinity (S), potential temperature
(0) and dissolved oxygen (O, pmolkg ~ 1y were recorded continuously with the
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Figure 3 | Global distribution of the AOU and fluorescence components. The AOU (a) and the fluorescence intensity at the excitation-emission
maxima of each component (Fmax) of the four components (b-e) discriminated by the PARAFAC analysis in the global ocean data set of the Malaspina
2010 Expedition are plotted. Note that the depth range starts at 200 m. See Methods and Supplementary Fig. 2 for a detailed description of the four
fluorescence components.

temperature®®. Bottle depths were chosen on the basis of the CTD-O, profiles to
cover as much water masses as possible of the dark global ocean. Seawater samples
for fluorescence measurements, collected in 121 Niskin bottles, were immediately
poured into glass bottles and stored in dark conditions until measurement within
6h from collection. We collected 800 water samples from 200 to 4,000 m depth.

conductivity-temperature-depth (CTD) and oxygen sensors installed in the rosette
sampler. Salinity and dissolved oxygen were calibrated against bottle samples
determined on board with a salinometer and the Winkler method, respectively. The
AOU was calculated as the difference between the saturation and measured dis-
solved oxygen. Oxygen saturation was calculated from salinity and potential
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components for each WT (see Methods; equation (6)).

Fluorescence spectral acquisition. When the coloured fraction of marine
DOM (CDOM) is irradiated with ultraviolet light, it emits a fluorescence signal
characteristic of both amino-acid- and humic-like compounds, which is collectively
termed FDOM!?. Fluorescence excitation—emission matrices (EEMs) were
collected with a JY-Horiba Spex Fluoromax-4 spectrofluorometer at room
temperature (around 20 °C) using 5nm excitation and emission slit widths, an
integration time of 0.25s, an excitation range of 240-450 nm at 10 nm increments
and an emission range of 300-560 nm at 2 nm increments. To correct for lamp

6

spectral properties and to compare results with those reported in other studies,
spectra were collected in signal-to-reference (S:R) mode with instrument-specific
excitation and emission corrections applied during collection, and EEMs were
normalized to the Raman area (RA). In our case, the RA and its baseline correction
were performed with the emission scan at 350 nm of the Milli-Q water blanks and
the area was calculated following the trapezoidal rule of integration?’.

To track the variability of the instrument in the Raman, protein- and humic-like
regions of the spectrum during the 147 working days of the expedition and assess
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gradual spectral bias, three standards were run daily: (1) a P-terphenyl block
(Stranna) that fluoresces in the protein region, between 310 and 600 nm exciting at
295nm; (2) a tetraphenyl butadiene block (Stranna) that fluoresces in the humic
region, between 365 and 600 nm exciting at 348 nm; and (3) a sealed Milli-Q
cuvette (Perkin Elmer) scanned between 365 and 450 nm exciting at 350 nm.
Supplementary Figure la shows that the temporal evolution of the RA of the
Milli-Q water used on board and the reference P-terphenyl and tetraphenyl
butadiene materials were parallel, which confirms that the Raman normalization
was successful in both the protein- and the humic-like regions of the EEMs.
Therefore, no additional drift corrections were necessary. The comparison between
the reference sealed Milli-Q (sMQ) and the daily Milli-Q water allowed us to
demonstrate that the Milli-Q water used on board was of a good quality
(Supplementary Fig. 1b). The average coefficient of variation between the sMQ and
Milli-Q water throughout the circumnavigation was only 0.81%. Similarly, two
scans of the reference sealed Milli-Q were measured at the beginning (sMQ;) and
at the end (sMQ,) of each session, which reveals a slight shift of the fluorescence
intensities along each working day (Supplementary Fig. 1c). The initial and
final SMQ spectra were separated by about 10 h of continuous work of the
spectrofluorometer. We found that the average coefficient of variation between
sMQ; and sMQ, was 1.62%. Therefore, the daily instrument shift was low and
about twice the long-term variability throughout the circumnavigation.
Inner-filter correction was not applied due to the low absorption coefficient of
CDOM of the samples collected during the circumnavigation: 1.01 £0.04m ~!
(average *s5.d.) at 250 nm, that is, much lower than the threshold of 10 m ~ L above
which this correction is requireds. Raman-normalized Milli-Q blanks were
subtracted to remove the Raman scattering signal®"32. RA normalization, blank
subtraction and generation of EEMs were performed using MATLAB (version
R2008a).

Global PARAFAC modelling. PARAFAC was used to identify the fluorescent
components that comprise the EEMs in the global ocean. PARAFAC was per-
formed using the DOMFluor 1_7 Toolbox®. Before the analysis, Rayleigh scatter
bands (first order at each wavelength pair where Ex =Em * bandwidth; second
order at each wavelength pair where Em =2 X Ex % (2 X bandwidth)) were
trimmed. The global PARAFAC model was derived based on 1,574 corrected EEMs
and was validated using split-half validation and random initialization®. A four-
component model was obtained (Supplementary Fig. 2), two of them of humic-like
nature, peak A/C (at Ex/Em <270-370/470 nm) and peak M (at Ex/Em 320/
400 nm), and two of amino-acid-like nature, attributed to tryptophan and tyrosine
at 290/340 and 270/310 nm®, respectively. Here we report the maximum
fluorescence (Fmax) in Raman units (RU) (refs. 31,32).

Multi-parameter water mass analysis. The dark ocean (from 200 m to the
bottom) can be described by the mixing of prescribed WT, characterized by a
unique combination of thermohaline and chemical property values. Water mass
analysis quantifies the proportions of the WT that contribute to a given water
sample. In our case, we have characterized the WT on the basis of its salinity (S)
and potential temperature (0), which are assumed to be conservative parameters
and, therefore, they do not change from the area where the WT are defined to the
study area.

The equations to be solved for a water sample j are:

100 = inj (1)
0; = inj - 0; (2)

Sj = ZXU . Si, (3)

where x;; is the proportion of WT i in sample j; 0; and S; are the thermohaline
characteristics of sample j; and 0; and S; are the prescribed thermohaline
characteristics of WT i in the area where it is defined. Furthermore, the solution of
the multi-parameter water mass analysis includes an additional constraint, that is,
all contributions (x;;) have to be non-negative.

We identified 18 water masses and 22 WT on the route sampled and their
characteristics are summarized in Supplementary Table 1. They were divided into
three domains according to their depth: central, intermediate and abyssal waters. In
the central domain, there are Eighteen Degrees Water (EDW), Eastern North
Atlantic Central Water (ENACW), defined by two WT of 12 and 15 °C, Equatorial
Atlantic Central Water (13 °C; 13EqAtl), South Atlantic Central Water (SACW),
defined by two WT of 12 and 18 °C, Indian Subtropical Mode Water (STMWj),
Indian Central Water (13 °C; ICW,3), South Pacific Subtropical Mode Water
(STMWsp), South Pacific Central Water (20 °C; SPCW ), Equatorial Pacific Central
Water (13 °C; 13EqPac), North Pacific Subtropical Mode Water (STMWyp) and
North Pacific Central Mode Water (12 °C; CMWyp). In the intermediate domain, we
found Mediterranean Water (MW), Sub-Antarctic Mode Water (SAMW), Antarctic
Intermediate Water (AAIW), defined by two WT of 3.1 and 5.0 °C, and North Pacific
Intermediate Water (NPIW). In the abyssal domain, there are Circumpolar Deep

Water (1.6 °C; CDW), North Atlantic Deep Water (NADW), defined by two types of
2 and 4.6°C, and Antarctic Bottom Water (AABW).

Equations (1)-(3) can be solved for a maximum of three WT simultaneously.
Given that we have identified 22 WT, we have grouped the WT in the triads
presented in Supplementary Table 2 on the basis of reasonable vertical and
geographical constraints to the water mass mixing usually applied in the analysis of
water masses. Concerning the vertical constraints, for a given region of the ocean,
every WT will mix only with the WT situated immediately above and below
according to their density. Concerning the geographical constraints, every WT will
mix preferentially with WT in their surroundings.

The multi-parameter water mass analysis was applied to the 800 samples from
the dark ocean (0<18°C, AOU>0) where corresponding measurements of
fluorescence (Fmax1, Fmax2, Fmax3 and Fmax4) and AOU were obtained.

Once the WT proportions (x;;) are known, the proportion of the total volume of
water sampled that corresponds to WT i (%VOL;) can be calculated as:

2%

% VOL; = Jn , (4)

Where n=2800 is the number of deep samples.

Archetypal values of Fmax and AOU for each WT. Using the measured values of
fluorescence and AOU (N) and the proportions of the 22 WT identified in this
study (x), the water mass proportion-weighted average concentration of N in each
WT, Nj, termed archetypal value of N, can be calculated as'?:

2%+ Nj

N=1__ 5
1 zxij ( )
i
where N; is the concentration of N in sample j.
The s.d. of the estimated archetypal value of N; was
obtained by:
S (%N

s.d. (V) =+ (6)

2%
]

Similarly, the archetypal value of variable N in every sample (N;) was calculated as
follows:

inj X N;
J
N="00 @

The determination coefficient (R%) and the s.d. of the residual (s.d. res) of the linear

regressions of Nj (measured values) versus <N;> (archetypal values) allows

assessing the degree of dependence of variable N on WT mixing in the dark ocean.
Application of equations (5) and (6) to the collection depth of the samples (Z;)

allows obtaining the archetypal depth of each WT (Z;) and its corresponding

s.d. (Z).

NFP and turnover times of the components. The tight relationship between
fluorescence intensity and AOU for components C1, C2 and C4 allows estimating
the rate of change of Fmax per AOU unit (0Fmax/0AOU). It was calculated as the
first derivative of the power functions fitting Fmax; and AOU; (Fig. 4). Then, the
global net production of each fluorescence component, NFP (in RU per year), was
calculated as:

Z VOL; - (OFmax)i

OAOU
NFP = - -OCR (8)

100
where >~ VOL; - (OFmax/JAOU),/100 is the WT proportion-weighted fluores-
cence change rate per AOU unit of the global dark ocean. The OCR was calculated
by dividing 0.827 pmol O, per year, a conservative estimate of the global oxygen
demand of the dark ocean based on organic carbon sedimentation fluxes', by
1.38 x 101 kg, which is the mass of the ocean at a depth >200 m.

Once the NFP of the three components was obtained, we calculated their
respective turnover time (7):

>~ VOL; - Fmax;
i

T= o NEP ©)
100 - NEP
Where ) VOL; - Fmax;/100 is the WT proportion-weighted average fluorescence
of the ddrk global ocean.
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