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Abstract There is still little information on effects

of habitat degradation on post-dispersal seed preda-

tion at the landscape scale. The aim of this study was

to determine the influence of habitat degradation and

seed species on the variability of post-dispersal seed-

predation rate. Experimental seed removal was

investigated in six Mediterranean woody plant spe-

cies, four trees (Pinus sylvestris, Quercus ilex, Acer

opalus ssp. granatense, and Sorbus aria) and two

shrubs (Berberis vulgaris and Crataegus monogyna),

in an extensively used mosaic landscape on the Sierra

Nevada massif (SE Spain). Seed depots were distrib-

uted over 2 years in five differently degraded

landscape units, each one with three plots: shrubland;

native forest; and dense, cleared and fenced refores-

tation stands. Predation was the highest in native

forest, shrubland, and fenced reforestation, and the

lowest in dense and cleared reforestation stands, being

partially due to a positive correlation between shrub

cover and post-dispersal seed predation. However, the

main factors driving post-dispersal seed predation

were intrinsic to seeds, as species preference

explained most of the variance in our model for pre-

dation. The plant-species ranking was Quercus [
Pinus [ Sorbus [ Berberis [ Acer [ Crataegus, the

dominant tree species being the most depredated.

These findings are novel because they suggest for the

first time that species-selection patterns by post-

dispersal seed predators tended to remain constant

through both study years in all habitats comprising a

mosaic landscape, whether native forest, reforestation

stands or successional shrubland.
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Introduction

Post-dispersal seed predation is a limiting factor for

natural regeneration of many forest ecosystems

worldwide (Crawley 1992; Davidson 1993; Hulme

1993). In terms of plant populations, seed predators

limit the abundance of seed banks and determine their

spatial distribution, thereby having demographic

consequences such as local extinction of species
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(Crawley 1992; Hulme 1996). From a community

perspective, preferences of post-dispersal seed pre-

dators can modify composition and abundance of

species inhabiting forests and shrublands (Hulme

1996; Garcı́a et al. 2005).

There are two main sources of variability on post-

dispersal seed predation: intrinsic to seeds, such as

size, nutrient content, coat thickness, or toxic

defences (Vander Wall 1994; Hulme 1994; Hulme

and Hunt 1999; Garcı́a et al. 2005); or extrinsic, such

as the structure of the habitat where seeds are

dispersed, the variability of fruit production, or

changes in predator pressure (Myster and Pickett

1993; Rey et al. 2002; Schnurr et al. 2004). In

relation to spatial factors, most studies have analysed

the variability of predation rates between microhab-

itats of the same landscape unit (Schupp and Fuentes

1995; Rey et al. 2002; Fedriani and Manzaneda 2005;

Garcı́a-Castaño et al. 2006). These field studies have

provided strong evidence of a patchy structure of seed

predation at a microhabitat scale within a given

landscape unit. However, information on variability

of post-dispersal seed predation within habitats

differing in composition and structure in a given

landscape is still scarce (but see Garcı́a et al. 2005).

Most predation studies at the landscape scale have

been conducted under the habitat-fragmentation par-

adigm. The size reduction of the fragment and the

edge effect have been related to predation pressure,

which proved to be increased (Santos and Tellerı́a

1994, 1997; Kollmann and Buschor 2003; Fleury and

Galetti 2006; Garcı́a and Chacoff 2007) or reduced

(through changes in seed-predator abundances; Wyatt

and Silman 2004; Hanson et al. 2006) with fragment

size. This conceptual approach of intact forest

fragments immersed in a degraded matrix is based

on the classical biogeographical island theory of

MacArthur and Wilson (1967). However, Mediterra-

nean landscapes do not correspond to a ‘‘fragment-

matrix’’ structure of suitable habitats surrounded by

inhospitable matrices, but rather they are mosaics

composed of adjacent patches with different degrees

of degradation and suitability for species (Wiens

1995; Duelli 1997). The type of degradation may

affect the pattern of seed predation through the

different availability of food and protection that

predators can find in each habitat (Torre and Diaz

2004), very often related to shrub cover (Simonetti

1989). Despite the commonness of mosaic landscapes

around the world as a result of human impact (Turner

et al. 2001), there are no explicit studies addressing

the variability in post-dispersal seed predation in the

overall landscape units of a mosaic landscape. This

knowledge is relevant for the understanding of the

recruitment limitations in a degradation framework

(Mendoza et al. 2008).

The aim of the present study was to determine how

seed species and different composition and structure

of landscape units (derived from different habitat

degradation or change in land use) affect post-

dispersal seed predation patterns. For this purpose,

we experimentally evaluated seed removal in the

different landscape units composing the mosaic

landscape in Mediterranean mountains, each one

with a characteristic species composition and struc-

ture: native forest (the least degraded landscape unit),

pine reforestation stands, and post-fire successional

shrublands (these two latter coming from the degra-

dation of the former). Our working hypothesis was

that the composition and structure of the landscape

unit (the spatial pattern) will affect the post-dispersal

seed-predation rate (the process, sensu Turner 1989).

Different plant-species composition and structure of

landscape units may impose diverging abundance

and/or activity of predators, eventually determining

different post-dispersal seed-predation rates. In par-

ticular, we sought to determine: (1) whether post-

dispersal seed predation varied more depending on

seed species or the type of landscape unit, and (2)

whether there was inter-annual variability in the two

criteria (species versus landscape-unit selection). The

examination of the effects of seed-species identity,

different landscape units and their interaction during

2 consecutive years will contribute to identify seed

predation patterns and their potential effects on the

regeneration dynamics of shrubs and trees in this

Mediterranean mosaic landscape.

Methods

Study area

The present study was conducted during 2004–2005,

at Sierra Nevada National Park, surrounding the

Trevenque Peak area (37�50 N, 3�280 W, Granada

Province, SE, Spain). The climate is Mediterranean

mountain type, with hot dry summers and cold,
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snowy winters, and rainfall (818.1 mm year-1,

average during 1990–2006) heaviest in autumn and

spring. The bedrock is calcareous, and the predom-

inating soils are regosols and cambisols (Delgado

et al. 1989). The study area is composed of a mosaic

landscape with five different landscape units located

between 1,600 and 1,900 m a.s.l.: native forest,

dense, cleared, and fenced reforestation stands, and

shrubland. The first represents low degradation,

whereas the reforestation stands and the shrubland

constitute two contrasting types of degraded habitats.

The native forest is mainly composed of Pinus

sylvestris var. nevadensis Christ. mixed with other

trees such as Taxus baccata L. or Acer opalus ssp.

granatense Boiss. (mean tree density 114 trees ha-1),

and a dense shrubby understorey composed of

different fleshy-fruited shrub species (Berberis vul-

garis ssp. australis Boiss., Crataegus monogyna

Jacq., Juniperus communis L. and Lonicera xyloste-

um L.). Dense reforestation stands contain Pinus

sylvestris L. and Pinus nigra Arnold subsp. salzman-

nii (Dunal) Franco with mean densities of 1,041

individuals ha-1. Fenced stands are reforestations

with herbivore exclosure since 1982 and the same

tree density as dense stands. In cleared reforestation

stands timber was harvested in 2000 reducing tree

densities to 521 individuals ha-1. Shrubland is a

post-fire area from a reforestation burnt in 1983 and

currently dominated by Crataegus monogyna Jacq.,

Prunus ramburii Boiss., Salvia lavandulifolia Vahl.

and Erinacea anthyllis Link., with widely scattered

trees (21 individuals ha-1). Despite the fact that

Quercus ilex is an abundant species conforming to the

sapling bank in all the studied landscape units, this

species rarely appear conforming to the adult canopy

(Mendoza 2008). Each landscape unit was repre-

sented by three randomly chosen plots of similar size

(mean 0.53 ha) with an average distance of 688 m

between the three plots of the same landscape unit.

Plot areas were calculated by GIS using GPS data

(Leica SR 500; Leyca Geosystems, Switzerland). The

selected patches of the five different landscape units

occupied an area of about 3 km2 and were represen-

tative of the study area (Fig. 1).

Study species

To quantify the predation rate, we used seeds of six

woody species based on two arguments. First, these

species were representative of the woody community

appearing in the native forest of the study area,

including four trees (Pinus sylvestris var. nevadensis

Christ., Quercus ilex L., Acer opalus ssp. granatense

Boiss and Sorbus aria L.) and two shrubs (Berberis

vulgaris ssp. australis Boiss. and Crataegus

monogyna Jacq; hereafter, all of them will be called

by their genus name). Pinus and Quercus are the

dominant tree species, whereas Berberis and Cratae-

gus are the dominant shrubs. Quercus, Sorbus,

Berberis and Crataegus are dispersed by vertebrates

(Herrera 1992; Gómez 2004a), whereas Pinus and

Acer are wind-dispersed. The sample thus included

both anemochorous and zoochorous species, in addi-

tion to a broad array of different mechanical or toxic

defences (Kollmann et al. 1998; Garcı́a-Castaño

2001; Garcı́a et al. 2005). Second, the size range of

the seeds of the selected species (Table 1) was

representative of the size range of the whole commu-

nity available for seed predators. All fruits, cones

and acorns were collected in the same study area in

the autumn preceding each experimental trial. Seeds

were extracted and stored at 4�C until the field

experiments.

Fig. 1 Map of the study area representing a mosaic landscape

with adjacent patches composed of habitats with different

degrees of degradation. Each letter represents a different

habitat type: A = native forest, B = shrubland, C = cleared

reforestation stands, D = dense reforestation stands and

E = fenced reforestation stands
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Previous studies in the same study area (Castro

et al. 1999; Garcı́a et al. 2000; Gómez 2004a, b) have

reported, by field observation and trapping, that the

community of seed predators is composed of Apode-

mus sylvaticus (woodmouse) and Sus scrofa (wild

boar). S. scrofa only consume acorns of Quercus spp,

whereas A. sylvaticus predates seeds of the six

species used in our experiment. Consumption of

seeds by birds on the ground is rare in our study area

(no data recorded on bird censuses and focal obser-

vations for 3 years; unpublished data). Ants were not

considered as seed predators because they were

inactive at the moment the experiment was

performed.

Experimental design

Seed predation was quantified by recording removal

of seeds of the six species offered simultaneously to

predators in the field. Each experimental unit, a seed

depot, was composed of two squares (20 9 20 cm) of

plastic mesh pegged to the soil, a distance of 2 m one

from each other. To each square of plastic mesh, two

seeds of five species (Acer, Pinus, Sorbus, Crataegus

and Berberis) were glued in random position with a

low-odour thermoplastic adhesive (wind and rain

resistant). Also, one Quercus acorn was placed next

to the mesh (see Herrera et al. 1994; Alcántara et al.

2000; Garcı́a et al. 2005 for a similar procedure).

This procedure was intended to mimic natural seed

dispersal; Quercus acorns were partially buried,

imitating activity of Garrulus glandarius (jay), while

the rest of seeds were mixed with litter (3–5 mm

depth), simulating dispersal by wind or birds.

Seed depots were included in sampling stations. In

reforestation stands, the only kind of microhabitat

present was ‘‘under pine canopy’’, due to the high

density and uniform distribution of planted pines.

Therefore, sampling stations were composed of two

meshes. By contrast, the native forest and shrubland

had greater horizontal structural heterogeneity.

Because it has been demonstrated that the predation

rate changes between microhabitats of the same

landscape unit (Hulme 1994; Manson and Stiles

1998; Russell and Schupp 1998), we considered this

source of heterogeneity in forest and shrub habitats.

Thus, in each landscape unit, sampling stations were

composed of four seed depots, each one on the four

dominant microhabitats. In the native forest, these

were: under pine trees, under the two most abundant

fleshy-fruited shrubs and open areas. In shrubland,

these were: under the canopy of Crataegus, Prunus

and Salvia, and open areas. Each sampling station

was randomly placed within plots maintaining a

distance of at least 5 m from each other. In another

attempt to sample the structural heterogeneity of each

type of landscape unit, we measured shrub cover

using a 2-m radius circle centred in the seed depot

and recorded the percentage of the surface area

covered by shrubs. The overall design was a factorial

experiment with four factors: landscape unit, species,

year and shrub cover. The landscape-unit factor had

five levels, with three replicated plots per each one:

native forest, dense, cleared, fenced-reforestation

stands and shrubland. We established 15 sampling

stations per plot, making a total of 45 sampling

stations per level of landscape unit. Seeds were

exposed to predators at the end of winters of 2004

and 2005 (March) and monitored after 30 days. This

is the moment just when seed dispersal by wind and

by zoochorous animals are getting finished, but

before the beginning of the seedling emergence

Table 1 Seed characteristics of the six species used in predation experiment

Species Weight (g) Length (cm) Toxins

Acer opalus 0.042 ± 0.006 0.731 ± 0.384 –

Berberis vulgaris 0.019 ± 0.004 0.593 ± 0.048 Oxyacanthine, chelidonic acid,

isoquinoline alkaloid

Crataegus monogyna 0.742 ± 0.017 0.563 ± 0.069 –

Pinus sylvestris 0.012 ± 0.001 0.514 ± 0.029 –

Quercus ilex 5.078 ± 1.554 3.346 ± 0.378 Tannins

Sorbus aria 0.022 ± 0.009 0.576 ± 0.039 –

Means are given ±1 SD. For each measurement, 100 seeds were used. Information in toxicity is taken from the literature (Kollmann

et al. 1998; Johnson et al. 1993)

140 Plant Ecol (2009) 203:137–147

123



period (April–June) for all species. Thus, our exper-

imental design was conducted in the moment when

predators can alter the seed bank available to emerge

in that year. Furthermore, in our study system there is

no a permanent soil seed bank (Mendoza 2008), so

the effect of seed predators is exerted on the seeds

dispersed the same year.

For the overall 15 plots, the mean density of the

exposed seeds was 0.013 ± 0.006 seeds m-2 for

Quercus, and 0.025 ± 0.013 seeds m-2 for all other

species. This value was consistently lower than the

natural seed rain for the studied species in the same

areas (3–180 seeds m-2 depending on the species and

the landscape unit; Mendoza et al. 2008), thereby

avoiding attraction of predators due to increased seed

density (Garcı́a et al. 2007 and references therein).

We considered a seed to be depredated in two

cases: when it was missing from the plastic mesh, or

when it remained on the mesh but was gnawed and

empty (Garcı́a et al. 2005). We identified the predator

when possible (rodent versus wild boar): gnaw marks

on the seed coat and the presence of typical faeces

were attributed to rodents, whereas visible distur-

bance in the soil due to rooting around the seed and

characteristic faeces were assigned to S. scrofa.

Data analysis

For statistical analyses, we used the predation rate

from each of the 15 sampling stations (composed of

one seed depot in reforestation stands and of four in

shrubland and native forest). Data were analysed with

a logistic model (binomial generalized model) with a

logit link function, because the probability of each

individual seed to be predated was binary. We used as

response variable for the predation rate, calculated as

the proportion of depredated seeds to the total

number of exposed seeds per sampling station. The

categorical predictors were species, year and land-

scape unit; and the continuous predictor was shrub

cover. Interactions of shrub cover with the other

predictors were not included in the model due to the

lack of biological sense (as shrub cover was the same

for each seed depot where seeds of six species were

exposed during both years). Plot was removed as the

predictor since we found no significant differences

between the plots of the same landscape unit. We

used the RL
2 measure of explained variance (Menard

2000; Quinn and Keough 2002). Explained variance

was calculated using the rate of the Wald v2 of each

factor to the whole model G2 variance (Zar 1999). P-

value as well as explained variance were the criteria

used to determine the significance of the predictors.

JMP v. 7.0 (SAS Institute Inc. 2007) was used for

data analysis. Contrast tests were performed in order

to establish significant differences in levels within a

predictor variable.

Results

Out of the total number of cases in which the predator

was identified, 98.5% of the predation was found to be

by rodents, and only 1.5% by wild boars (consistently

acorn consumption), thus identifying rodents as the

principal seed predators in our study system.

All the main effects considered (species, landscape

unit, year and shrub cover) were strongly significant

separately (Table 2). The interactions between the

first three main effects were significant in all cases

except for the interaction between landscape unit and

year.

The fenced reforestation stand was the landscape

unit with the highest predation pressure (61.2% ±

42.6 SD), followed by the shrubland (53% ± 41.4

SD) and the native forest (48.3% ± 38.7 SD), the

lowest being in cleared (34.16% ± 39.8 SD) and

dense reforestation stands (24.4% ± 36.1 SD;

Fig. 2). The lack of significance between the inter-

action of landscape unit and year indicated that this

habitat selection pattern of seed predation remained

constant during both study years (Fig. 2). Shrub

cover had a significant effect over predation rate,

although the variance explained by this effect was

very low (Table 2). Habitats with higher percentages

of shrub cover—shrubland (36.6% ± 3.6 SD of shrub

cover), native forest (32.9% ± 5.3 SD) and fenced

reforestation stands (25.5% ± 4.1 SD)—had higher

predation rates than in the landscape units where the

shrub cover was scant, as in cleared reforestation

stands (13.5% ± 2.8 SD) and, particularly, dense

reforestation stands (1.9% ± 0.9 SD).

In terms of species, the most depredated was

Quercus (77.4% ± 35.6 SD), followed by Pinus

(73.3% ± 34.1 SD), and Sorbus (69.2% ± 35.5 SD;

Fig. 2). Berberis (30.1% ± 30.7 SD) showed medium

predation values, whereas Acer (10.4% ± 16.9 SD)

and Crataegus (5.5% ± 14.2 SD) registered very low
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predation rates (Fig. 3). Again, this pattern of species

preferences tended to be constant through time,

although Quercus and Sorbus had not significantly

different predation rates in 2005 (reflected in the

significant interaction between species and year). The

predation rates differed significantly between years,

being higher in 2004 than in 2005 for all cases (Fig. 2).

Discussion

Species selection

In our predation model, species identity explained

most of the variability in the predation rate (Table 2).

This agrees with many other studies showing that the

predation risk depends more on structural and

biochemical characteristics of species than on the

place where a seed is dispersed (Crawley 1992;

Barnea et al. 1993; Hulme 1997; Garcı́a-Castaño

2001). Our predation experiment revealed that

rodents selected certain species, establishing a strong

preference ranking: Quercus [ Pinus [ Sorbus [
Berberis [ Acer [ Crataegus (Fig. 2). Species pref-

erence may be determined by intrinsic seed factors,

such as the presence of toxins, nutrient contents or a

thick coat (Kollmann et al. 1998; Rey et al. 2002), as

well as seed size (Martı́nez et al. 2007; Mendoza and

Dirzo 2007). In the case of Berberis, the relatively

low predation rate found may be influenced by the

presence of several toxins such as oxyacanthine,

chelidonic acid and isoquinoline alkaloid (Kollmann

et al. 1998). The lowest predation rate of Crataegus

is presumably because of the very thick seed coat of

this species (Garcı́a-Castaño 2001; Garcı́a et al.

2005). That is, for similar sizes, seeds with propor-

tionally thicker coats are better defended, so they are

less profitable for predators (in terms of higher seed-

husking cost, Hulme 1993) than those with an

embryo plus endosperm fraction surrounded by a

thinner coat. Therefore, the absence of either a thick

coat or toxins in Pinus and Sorbus may be one reason

Table 2 Results of the generalized linear model examining the significance of habitat, species identity, year, and the interactions

among main factors on the seed predation rate

Model effects DF Wald v2 P Explained variance (%)

Species 5 4,040.18 <0.0001 68.62

Year 1 127.91 <0.0001 2.17

Landscape unit 4 95.93 <0.0001 1.63

Shrub cover 1 26.25 <0.0001 0.44

Landscape unit 9 species 20 214.36 <0.0001 3.64

Species 9 year 5 43.55 <0.0001 0.74

Landscape unit 9 year 4 8.31 0.08 0.14

Landscape unit 9 species 9 year 20 62.67 <0.0001 1.07

Binomial was the probability distribution, and logit the link function. Explained variance is calculated as the proportion of whole

model variance (G2) fitted by each factor (Wald v2)

Whole model test: G2 = 5,887.77; RL
2 = 0.447; DF = 60; P \ 0.0001

Bold indicates significant effects in the model
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for their high predation values. Quercus was the most

depredated species, presumably because it was also

the heaviest seed of the six species and contained a

high percentage of lipids, therefore representing a

valuable resource for predators (Gómez 2004b). Also,

this species was depredated by all the predators in the

area (wild boar as well as rodents) so the predation

risk was increased.

Landscape unit selection

Classical approaches to landscape degradation based

on a ‘‘fragment-matrix’’ concept that assumed that

intact fragments were surrounded by an unattractive

matrix, differences in predation being determined by

fragment size or edge effect (Burkey 1993; Orrock

et al. 2003; Tallmon et al. 2003). On the contrary, in

a mosaic-landscape approach, there is no place for an

unattractive matrix, because the landscape is com-

posed of adjacent patches diverging in their

degradation type (Wiens 1995). In fact, within our

mosaic landscape, we found a pattern that related

landscape units to post-dispersal seed predation over

both studied years, indicating that the predation

process can be affected by the composition and

structure of habitats differing in the type of degrada-

tion. This was in part explained by the abundance of

shrubs, although the effect did not explain much

variance in the model (Table 2). Presumably, shrubs

offer shelter and food to rodents, the main predators,

thereby increasing their abundance and activity

(Simonetti 1989; Fedriani and Manzaneda 2005;

Muñoz 2005; Mortelliti and Biotani 2006). Following

this trend, the native forest (the least-degraded

landscape unit) as well as shrubland showed heavy

predation pressure (Fig. 2). These results can be

explained by the fact that in these landscape units the

shrub cover was denser, and the microhabitats were

highly heterogeneous. On the contrary, dense and

cleared reforestation stands had the lowest values of

seed predation. The low shrub cover in these

landscape units resulted in less availability of safe

sites for rodents (Muñoz 2005), and therefore these

landscape units were unattractive for seed predators.

Fencing dramatically boosted predation rates in

reforestation stands most likely due to an increase

in the shrub understorey. Also, the existence of

indirect interactions between rodents versus ungu-

lates and wild boars may be responsible for an

increase in the rodent populations due to fencing

(Focardi et al. 2000; Smit et al. 2001; Shepherd and

Ditgen 2005; Muñoz and Bonal 2007). Although in

our model the shrub cover explained only 0.44% of

the total variance, this may be attributed to opera-

tional sampling restrictions (same shrub cover for the

six species on each sampling station and for both

years).

Habitat and temporal patterns of species-specific

selection

Strong post-dispersal predation pressure (average for

all species and landscape units both years = 44%)

was found in the landscape mosaic of Sierra Nevada,

similar to values found in other Mediterranean

mountains such as Sierra de Cazorla (48%, Herrera

et al. 1994), Sierra Sur de Jaén (47%, Alcántara et al.

2000), or temperate woodlands (51%, Garcı́a et al.

2005). However, this pressure of post-dispersal seed
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Data were pooled for both study years. Contrast tests were

performed to compare the predation among types of landscape

unit (different letters indicate significant differences). Acer:
native (a); dense (b); cleared (c); fenced (a); shrubland (b).
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(b); cleared (c); fenced (d); shrubland (d). Sorbus: native (a);

dense (b); cleared (b); fenced (c); shrubland (d)
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predation did not have the same magnitude between

adjacent landscape units in a landscape mosaic.

According to our results, predation pressure was

higher in some landscape units (shrubland, native

forest and fenced reforestation stands) than in others

(dense and cleared reforestation stands). Although

differences between landscape units were significant

and only explained a low percentage of the total

variance, there was no significant interaction between

year and landscape unit (Table 2), reflecting that the

landscape-unit pattern was consistent, at least during

both study years. Despite this, the total intensity of

predation rates shifted among years, potentially

modifying recruitment opportunities (Eriksson and

Fröborg 1996), especially for the preferred species

(Pinus and Quercus). The year 2005 was more

favourable for seed survival than 2004, when preda-

tion intensity was very high and only a few seeds

were available to create a seed bank. This inter-

annual variability in predation pressure may be

related to temporal variation in fruit production and

pine cones (Mendoza 2008). In the case of species-

selection pattern, it was consistent over habitats and

time; that is, in most cases, the same ranking of seed

predation was maintained in each landscape unit

every year except for Quercus, the most depredated

species in all landscape units except in fenced

reforestation stands (Fig. 3). This predation rate of

Quercus undoubtedly decreased because of the

exclusion (by fencing) of wild boar, one of the main

acorn predators (Gómez et al. 2008). This is reflected

in the significant interaction between landscape unit

and species in the model. The existence of patterns on

species preference among different habitats can be

found in other systems such as temperate forests

(Kollmann et al. 1998; Hulme and Borelli 1999) or

Mediterranean woodlands (Hulme 1997; Rey et al.

2002).

Consequences for regeneration

Our results suggest the existence of species- and

habitat-selection patterns in predation rate among

degraded habitats through time. Seed predation

differed between adjacent landscape units of similar

size, and the intensity of predation depended more on

seed characteristics than on the shrub coverage in

each landscape unit. Thus, our experimental results

support the contention that differences in the

composition and structure of this Mediterranean

mosaic landscape (the pattern) may affect the post-

dispersal seed-predation rate (the process) at the

landscape scale. Because habitat use and diet selec-

tion by rodents can change across years depending on

the availability of food resources, abundance of

rodents and their predators, and climatic conditions

(Schnurr et al. 2004; Caccia et al. 2006), long-term

experiments integrating broad spatial and temporal

scales are need to give more support to the pattern

found in this study.

Consistent patterns of species selection by seed

predators can have demographic effects, as the

systematically more-consumed species (i.e., Quercus

or Pinus) suffer a significantly higher reduction in the

number of propagules available for recruitment than

the less-consumed species (Janzen 1971; Louda

1989; Davidson 1993; Hulme 1996; Rey and Alcánt-

ara 2000; Garcı́a et al. 2005). As a consequence of

these selection criteria, seed predators can affect the

coexistence of different tree species (Hulme 1996;

Wright 2002) by drastically reducing the seed

survival of the two dominant tree species (Pinus

and Quercus), in favour of the rarest tree species

(Acer; see Paine and Beck 2007 for a similar

abundance-dependent pattern). The impact of seed

predators on both dominant tree species is exacer-

bated by the fact that neither Pinus nor Quercus have

a seed bank and they have less supra-annual

variability in seed production in comparison with

other Mediterranean species (Herrera et al. 1998),

probably because they are unable to saturate rodents

by crop overabundance.

Notably, seed predators favoured the shrub species

(Berberis and Crataegus), which were less attacked

than were the tree species (Quercus and Pinus) in all

landscape units. As shrub species are more abundant

than tree species in terms of cover as well as number

of individuals, this could potentially alter species

composition and abundance of the woody community

at the seedling stage. Consequently, post-dispersal

seed predation can filter the species pool available for

recruitment of the woody community in a similar way

in all landscape units, irrespective of the degree of

degradation, reducing the number of propagules of

dominant tree species (Pinus and Quercus) and

favouring a shrub-like landscape, which is the type

of landscape unit where rodents can find both food

and refuge. These findings are novel because they
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indicate that although seed predation pressure differs

between adjacent landscape units, the selective

filtering on the seed bank of woody species due to

post-dispersal seed predators, tends to be constant in

all landscape units, whether native forest, reforesta-

tion stands, or successional shrubland.
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