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ABSTRACT

Aim Mediterranean terrestrial ecosystems serve as reference laboratories for the
investigation of global change because of their transitional climate, the high
spatiotemporal variability of their environmental conditions, a rich and unique
biodiversity and a wide range of socio-economic conditions. As scientific develop-
ment and environmental pressures increase, it is increasingly necessary to evaluate
recent progress and to challenge research priorities in the face of global change.

Location Mediterranean terrestrial ecosystems.

Methods This article revisits the research priorities proposed in a 1998 assessment.

Results A new set of research priorities is proposed: (1) to establish the role of the
landscape mosaic on fire-spread; (2) to further research the combined effect of
different drivers on pest expansion; (3) to address the interaction between drivers
of global change and recent forest management practices; (4) to obtain more
realistic information on the impacts of global change and ecosystem services; (5) to
assess forest mortality events associated with climatic extremes; (6) to focus global
change research on identifying and managing vulnerable areas; (7) to use the
functional traits concept to study resilience after disturbance; (8) to study the
relationship between genotypic and phenotypic diversity as a source of forest
resilience; (9) to understand the balance between C storage and water resources;
(10) to analyse the interplay between landscape-scale processes and biodiversity
conservation; (11) to refine models by including interactions between drivers and
socio-economic contexts; (12) to understand forest–atmosphere feedbacks; (13) to
represent key mechanisms linking plant hydraulics with landscape hydrology.

Main conclusions (1) The interactive nature of different global change drivers
remains poorly understood. (2) There is a critical need for the rapid development
of regional- and global-scale models that are more tightly connected with large-
scale experiments, data networks and management practice. (3) More attention
should be directed to drought-related forest decline and the current relevance of
historical land use.
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INTRODUCTION

The earth system is changing, threatening the ecosystem services

upon which we depend (Steffen et al., 2004). Greenhouse gas

emissions are causing climate change, characterized by warmer

temperatures and more frequent and intense droughts (Giorgi &

Lionello, 2008), which, in turn, imply an increase in climatic fire

risk (Pausas, 2004). Other anthropogenic changes include major

changes in land use, increasing nitrogen deposition and the

accumulation of tropospheric ozone (Steffen et al., 2004).

Mediterranean terrestrial ecosystems (MTEs), including

forests, shrublands and pastures, serve as exemplary natural

laboratories in which to study global change because they are

highly sensitive to several drivers of such change and to the

interactions among these drivers (Sala et al., 2000). The climate

in MTEs shows a high sensitivity to global atmospheric changes

due to the transitional nature between arid and temperate

regions in these ecosystems (Giorgi, 2006). Increased aridity is

expected in most existing MTEs (Sillmann et al., 2013). The

combination of extreme climate events, a long history of land-

use changes and the particular geology of these ecosystems has

resulted in more frequent and intense fires, water scarcity and

land degradation (soil and productivity loss), among other

impacts (Conacher, 1998; Keeley et al., 2012). MTEs show high

levels of heterogeneity at different scales due to these disturb-

ances and large seasonal and inter-annual climatic variability

(Rundel, 1998). This distinctive spatiotemporal variability of

environmental factors has resulted in a singular and diverse

biota, with elevated vulnerability to extinction induced by global

change (Malcolm et al., 2006). Given that socio-economic

trends are projected to have a greater effect than climatic drivers

on land use (Schröter et al., 2005), it is important to be able to

study global change in different social and economic contexts

and across different policy regimes. Among the world’s MTEs,

the Mediterranean Basin serves as a particularly valuable labora-

tory for studying global change because of its wide range of

socio-economic conditions and government policies (Brauch,

2003).

A consistent evaluation of the principal research gaps within

MTEs, with special consideration given to the Mediterranean

Basin, has the potential to provide valuable information on how

to advance in handling the future impacts of global change on a

global scale. A previous study by the International Geosphere-

Biosphere Programme (Lavorel et al., 1998; hereafter La98) pro-

vided the first roadmap for conducting global change research in

Mediterranean Basin ecosystems and recommended that spe-

cific actions be carried out in the region. Now, after 15 years of

increasing research efforts devoted to the impacts of global

change, it is time to evaluate the current state of the art with

regard to these targets and to propose a new set of priorities for

the coming decades – including priorities relevant to the MTEs

outside the Mediterranean Basin.

To do this we revisit the priorities recommended by La98,

following their original order, and we provide an update of their

current state and relevance. We then suggest a new set of prior-

ities for the future. Our specific objectives are: (1) to evaluate the

progress of the research carried out in MTEs; (2) to assess the

accomplishment of previous priorities; and (3) to update the list

of priorities with emerging topics and challenges.

EVALUATION OF THE ACCOMPLISHMENT OF
THE LA98 RESEARCH PRIORITIES

To understand future fire regimes and their effects

Prediction of future fire regimes, involving interaction with

global changes

Land-use change may modify the fire regime by altering fuel

load and distribution or ignition patterns. In the MTEs of

Europe, massive abandonment of agricultural land has

increased landscape homogeneity and crown fire potential,

which in turn facilitates the spread of fire (Lloret et al., 2002;

Mitsopoulos & Dimitrakopoulos, 2007). In contrast, central

Chile has experienced an overall trend of deforestation and loss

of shrubland but no clear trend in burned area (Montenegro

et al., 2004). In California, urban development is the major

driver of land transformation, increasing ignitions in the

wildland–urban interface (Syphard et al., 2007).

In the Mediterranean Basin, fire-suppression policies may

reduce fire size in the short term but promote megafires in the

longer term (Piñol et al., 2007; Brotons et al., 2013). In contrast,

fuel reduction policies are regularly implemented with pre-

scribed fires in several MTEs in order to reduce hazard in popu-

lated areas and to reproduce a fire regime that supports

biodiversity in a fine-grain mosaic of vegetation (Price &

Bradstock, 2010). Prescribed burning, however, remains contro-

versial (Boer et al., 2009; Fernandes et al., 2011). Under extreme

weather conditions, fuel quantity no longer serves as a control

on fire regime and large fires may even occur with relatively low

fuel loads (Keeley & Zedler, 2009; San-Miguel-Ayanz et al.,

2013). Site idiosyncrasy is also important, affecting pre-fire

patch grain and distribution (Syphard et al., 2007). Fire-induced

landscape homogenization (by large or frequent fires) as

opposed to heterogenization (by scattered fires through space

and time) appears highly dependent on fire regime (Lloret et al.,

2002).

Climate change is expected to increase dryness in MTEs due

to warmer temperatures and reduced precipitation, particularly

during the summer (Giorgi & Lionello, 2008; Sillmann et al.,

2013). Overall, this tendency will lead to increasing climatic fire

risk (Liu et al., 2010), as already apparent from historical records

(Kraaij et al., 2013). However, this trend is also influenced by

fuel availability, determined by both the quantity of fuel and

climate-driven fuel moisture (Westerling et al., 2006; Batllori

et al., 2013). Although lower air humidity and fuel water content

are positively related to fire ignition and propagation, a drier

climate eventually leads to a decrease in fuel load, due to lower

productivity (Lenihan et al., 2003; Batllori et al., 2013).

CO2 fertilization could affect fuel accumulation and thus fire

regimes. Recent projections at the regional level reveal that the

net effect of CO2 fertilization combined with drought stress
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remains uncertain (Keenan et al., 2011). However, water appears

to be more important than CO2 as a driver of growth in water-

limited MTEs (Fatichi et al., 2014). In addition, the combination

of increased fire frequency and drought stress could enhance

shrub encroachment (Pausas, 1999; Mouillot et al., 2002) and

thus reduce carbon storage.

Fire impacts

On landscape patterns

The main aim behind the extensive development of spatially

explicit landscape models for MTEs is to assess the vulnerability

of forests to fire due to soil degradation or vegetation shifts

(Franklin et al., 2005; Millington et al., 2009). Most of these

models, therefore, include forest management and environmen-

tal factors within specific landscape configurations (Loepfe et al.,

2011; Moreira et al., 2012). However, models are still incomplete,

in the sense that anthropogenic factors are usually not included in

the generation of landscape projections and thus the prediction

of future fire impacts (Syphard et al., 2007; Le Page et al., 2010).

On vegetation

Simulation models of fire and vegetation dynamics, including the

interaction between these variables, have been developed, con-

sidering different spatial scales, vegetation levels, successional

approaches and explicit or implicit simulation of fire spread

(Keane et al., 2004; Millington et al., 2009).Analysis of the regen-

erative traits of species and populations remains a key approach

in the assessment of the sensitivity of plant species to predicted

fire regimes and for modelling changes in species distribution

and community composition (Lloret et al., 2005; Syphard &

Franklin, 2010). Several studies have assessed the short-term

responses of MTE vegetation (Keeley et al., 2012; Moreira et al.,

2012) but more attention should be paid to longer time frames.

Combined with other factors

The consequences of the combined effects of fire and drought in

the form of a decline in the regeneration of plants and land

degradation have been the object of intense study (e.g. Mouillot

et al., 2002; Montenegro et al., 2004). More recently, the role of

fire in facilitating the spread of biological invasions in MTEs has

also attracted attention (Rouget et al., 2001; Pino et al., 2013)

and research in this area is revealing the vulnerability associated

with properties of the fire regime such as fire frequency (Keeley

& Brennan, 2012) and intensity (Franklin, 2010).

Fire control and mitigation

Prevention

Since La98, many studies have been conducted to characterize

the relationship between different fire spread characteristics

using diverse approaches. These include fire behaviour models

coupling suppression policies and vegetation dynamics, forest

inventories, wildfire databases and fire severity studies (e.g. Boer

et al., 2009; Price & Bradstock, 2010). Such studies have pro-

vided quantitative information about the best way to manage

forest fuels to obtain: (1) more favourable fire characteristics

(behaviour, frequency, size) aiding future fire suppression

(Crecente-Campo et al., 2009) or unplanned fire extents (Boer

et al., 2009), and (2) landscape configurations that are more

efficient at reducing megafires (Millington et al., 2009; Loepfe

et al., 2011). Several studies have also reported positive feedback

between flammable vegetation types and fire frequency (Vilà

et al., 2001; Grigulis et al., 2005).

Restoration

The last decade has seen substantial advances in key aspects of

post-fire forest restoration, such as the analysis of vegetation

recovery (Díaz-Delgado & Pons, 2001; Díaz-Delgado et al.,

2002). A new field of study deals with the identification of previ-

ous land-use changes as drivers of post-fire regeneration (Clavero

et al., 2011; Puerta-Piñero et al., 2012). Additional break-

throughs have been made in the study of facilitative interactions

and the use of shrubs as potential nurse plants (Gómez-Aparicio

et al., 2004), underscoring the role of early and mid-successional

shrubs for forest regeneration in burnt areas (Gómez-Aparicio

et al., 2004; Siles et al., 2010). In addition, a novel focus has

recently appeared in relation to the use of coarse woody debris to

foster restoration success, as this debris may act as a nurse struc-

ture, improving microclimatic conditions for seedling establish-

ment, increasing soil nutrient content and improving other

physical and chemical properties of the soil (Castro et al., 2011;

Marañón-Jiménez & Castro, 2013; Marzano et al., 2013). Burnt

trees are also a biological legacy crucial for the recovery of com-

munities and for the structure and function of regenerating

mediterranean-type ecosystems by promoting plant-animal

interactions and increasing plant and animal diversity (Castro

et al., 2012; Lee et al., 2013; Marzano et al., 2013; Leverkus et al.,

2014), reducing invasion by exotic species (Moreira et al., 2013),

promoting soil microbial activity (Marañón-Jiménez & Castro,

2013) and carbon sequestration (Serrano-Ortiz et al., 2011).

To study the effects of land use on
biosphere–atmosphere interactions

Feedbacks of land-use changes on the climate system

While a great deal of uncertainty persists concerning the impacts

of land-use changes on regional climate models (Bonan, 2008),

modelling results for the Mediterranean suggest that changes in

land use significantly affect climate (Lionello et al., 2006).

Changes in evapotranspiration rates and surface albedo due to

deforestation in the Mediterranean Basin could provoke cooler

and moister springs but warmer and drier summers (Heck et al.,

2001) or instead cooling during summer (Zampieri & Lionello,

2011). In south-west Australia, deforestation may lead to long-

term reductions in rainfall patterns (Pitman et al., 2004). In
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summary, available models indicate that the climate of MTEs is

sensitive to changes in vegetation cover, especially in summer.

However, the induced climate anomalies can be associated with

fine-grained, complex and non-local mechanisms and their rela-

tive weights in driving local effects are still uncertain

(Seneviratne et al., 2010).

Feedbacks of ecosystem physiology on the climate system

Current evidence suggests that CO2-driven feedbacks on tem-

perature through physiological responses of vegetation are neg-

ligible (Keenan et al., 2011; Cheaib et al., 2012).

The effects of climate change on soil respiration and the emis-

sion of other biogenic gases are still a major concern. Increases

in drought intensity in the Mediterranean Basin have been asso-

ciated with episodes of tree mortality during recent decades

(Martínez-Vilalta et al., 2012; Sánchez-Salguero et al., 2012). A

recent study shows that although current tree mortality is not

affecting the carbon balance of Mediterranean forests, increased

warming and drought are likely to alter the capacity of these

forests to absorb CO2 and forest management may be a key

factor determining the response of forest C balance to changing

climate (Vayreda et al., 2012).

Some studies have reported an increase in soil organic carbon

(SOC) and other nutrient fractions under drought due to rising

quantities of litterfall and dead roots (Talmon et al., 2011) and

to decreased soil decomposition and respiration (e.g., Curiel

Yuste et al., 2007; Ryals & Silver, 2013). However, observational

studies suggest that drought should decrease SOC in the long

term by reducing plant cover, which implies a decrease in

litterfall, soil protection and permeability (Boix-Fayos et al.,

1998). Furthermore, in MTEs there is an overall reduction in

biological activity in the soil due to a reduction in soil moisture

(Brown et al., 1996), and this results in a decrease in soil nutrient

availability and soil CO2 emissions (Emmett et al., 2004; Sardans

et al., 2008). An increasing body of research is also starting to

reveal the key role of microbial communities in ecosystem pro-

cesses under climate-change scenarios, particularly in soil

carbon dynamics (Balser & Wixon, 2009; Asensio et al., 2012;

Curiel Yuste et al., 2012).

Biogenic volatile organic compounds (BVOCs) were not pre-

viously considered but are also crucial for understanding both

biological consequences and feedbacks on atmospheric chemis-

try and climate itself (Monson et al., 2007; Peñuelas et al., 2013).

The emission rates of BVOCs increase with rising global tem-

perature, but changes in species and community structure, land

use and resource availability can also lead to major changes in

Mediterranean regional BVOC fluxes (Peñuelas & Staudt, 2010).

Contribution of fire related emissions of carbon, nitrous oxides

and other trace gases to the atmosphere and their potential

effects on climate

Fire emissions cause significant perturbations of the chemical

composition of the atmosphere and in the earth climate system,

as several field campaigns as well as laboratory experiments and

prescribed burnings in MTEs have shown (Ciccioli et al., 2001;

Phuleria et al., 2005; Wain et al., 2008; Garcia-Hurtado et al.,

2013). The principal gases emitted include carbon dioxide

(CO2), carbon monoxide (CO) and methane (CH4), but also

nitrogen oxides (NOx and N2O), ammonia (NH3), sulphur

dioxide (SO2), light hydrocarbons, volatile and semi-volatile

organic compounds, and particulate matter (10–2.5 μm), which

could affect climate change and human health (Ciccioli et al.,

2001; Bell & Adams, 2008).

Studies have been conducted to characterize biomarkers from

woodstove combustions and wildfires (Muhle et al., 2007;

Gonçalves et al., 2011), but the challenge of identifying the main

tracer compounds emitted by forest fires in MTEs continues.

EMEP/CORINAIR emission inventories and satellite obser-

vations, including those using Moderate Resolution Imaging

Spectroradiometer (MODIS) data, have been used to feed

several emission and air quality models (Lazaridis et al., 2005;

Paton-Walsh et al., 2012).

Coupled biosphere–atmosphere models for the

Mediterranean Basin

Large-scale generalized simulations of the effects of climate and

land-use changes on MTEs exist (Zaehle et al., 2007), but

regional applications to key ecosystems (including cropland

phenology and management to account for associated albedo

feedbacks; Sus et al., 2010) are scarce. During the past decade,

the development of non-fully-coupled models simulating medi-

terranean terrestrial biosphere–atmosphere interactions has

focused on the integration of information on ecosystem physi-

ology and land-cover dynamics (e.g. Gritti et al., 2006). Only in

recent years, however, have fire models begun to be incorporated

into land-surface models (e.g. Prentice et al., 2011). Early efforts

identified model deficiencies in reproducing the response of leaf

gas exchange to drought events (Reichstein et al., 2003), leading

to subsequent model development (Garbulsky et al., 2008;

Keenan et al., 2010). Despite this, models continue to perform

poorly in conditions of water stress (Vargas et al., 2013). Many

ecosystem disturbances, processes and physiological responses

remain poorly understood, and are not explicitly accounted for

in models, such as, for example, competitive interactions, the

depletion of carbohydrate reserves and stress-induced plant

decline and mortality (e.g. Carnicer et al., 2011; Misson et al.,

2011).

To study landscape effects on water availability
and quality

Research at the patch scale

Leaf area index (LAI) and hydrological response

Land-use changes, hydroclimatic conditions and fires are the

main drivers of changes in vegetation cover in MTEs and there-

fore exert great influence on the hydrological responses of these

ecosystems. Fires, for instance, influence understorey regrowth
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and hence may contribute to maintaining ecosystem evapotran-

spiration fluxes (Macfarlane et al., 2010). Land-use history also

modulates the hydrological behaviour through changes in soil

properties such as soil water repellency and infiltratability

(Llovet et al., 2009).

Drought-induced episodes of vegetation dieback may result

in different ecohydrological effects compared with canopy cover

changes (Adams et al., 2012). For example, generalized drought-

induced defoliation across southern European forests (Carnicer

et al., 2011) may gradually reduce stand transpiration (e.g.

Limousin et al., 2009). Drought severity and/or duration

together with local factors such as soil water-holding capacity

(Peterman et al., 2013) and species-specific drought-tolerance

traits (Jacobsen et al., 2007; Matías et al., 2012) will ultimately

determine plant survival and, hence, the impact of episodic

drought on hydrological processes.

Temporal variability

In general, evapotranspiration in MTEs is strongly depressed

during summer (Baldocchi et al., 2010; Raz-Yaseef et al., 2012).

However, mediterranean plant species in MTEs show a variety of

responses to cope with drought, from complete summer senes-

cence observed in some grasslands (Baldocchi et al., 2004) to

various degrees of stomatal control of transpiration (e.g. Quero

et al., 2011). In general, increased atmospheric CO2 concentra-

tions will induce stomatal closure and improve plant water

status, enhancing water-use efficiency and potentially reducing

the effects of increases in evaporative demand. However, the

impact of increased CO2 on ecosystem water use will vary with

vegetation type, species and stand development (Li et al., 2003).

Regardless of all these functional responses to water deficits,

water (and carbon) fluxes in MTEs are strongly reduced during

extreme drought events (Granier et al., 2007).

Hydrological equilibrium and simulation models

In MTEs, maximum LAI is constrained by vegetation type, local

climate and soil conditions, leading to the notion that there is an

‘equilibrium LAI’ that maximizes carbon assimilation (Hoff &

Rambal, 2003). This hypothesis was framed by La98 within

Eagleson’s (1982) broader concept of hydrological equilibrium,

but the optimality hypotheses associated with Eagleson’s

ecohydrological model have now been questioned in the context

of water-limited environments (Kerkhoff et al., 2004).

Research at the landscape scale

Mapping and emergent properties

The availability of earth observational data for ecological studies

has increased due to the launch of several multispectral high/

medium spatial resolution platforms and it will increase further

in the coming years with Landsat-8 and ESA’s Sentinel missions.

These developments will give continuity to the wide use of

remote sensing in previous MTE studies (Shoshany, 2000). Lidar

technology is becoming an operative application for acquiring

information about forest and shrubland structures in many

regions (Estornell et al., 2010; García et al., 2010). In contrast,

radar information, a promising data source in the past, has not

provided the expected results (Lu, 2006). MTEs have been

increasingly studied using remote sensing from different per-

spectives, including land-use/cover changes, drought, carbon

budget and foliar biochemical concentration and canopy struc-

ture (e.g. Serrano et al., 2001; Berberoglu & Akin, 2009).

Unmanned aerial systems (UAV) provide another increasingly

popular platform for ecological studies (Dunford et al., 2009;

Hernández-Clemente et al., 2012). Another area of interest is the

use of spectroradiometers as an augmentation to remote sensing

for validating or training models (Xu & Baldocchi, 2004; Glenn

et al., 2011).

Landscape change

Different studies at the operational catchment scale in several

MTEs have evidenced decreasing trends in the flow records (e.g.

Delgado et al., 2010; Zhao et al., 2010; see also Lespinas et al.,

2010, for contrasting results) and modifications of the flow

regime (e.g. López-Moreno et al., 2011; Morán-Tejeda et al.,

2011), partly (but not exclusively) attributable to forest expan-

sion. The effects of climate change on surface water quality and

ecology are attracting growing attention in mediterranean areas

(e.g. Munné & Prat, 2011; Otero et al., 2011). Investigations on

post-fire flows of soil, water and nutrients, however, have not

been so common, mainly because pre-fire data are frequently

unavailable (Shakesby, 2011) and the effects of prescribed fires

do not directly mimic natural wildfire influences (Seibert et al.,

2010).

Simulation models

Numerous complex hydrological models (often spatially distrib-

uted, physically based) have been used to assess the effects of

global change on water resources, soil erosion and vegetation

productivity (e.g. D’Agostino et al., 2010; Senatore et al., 2011).

However, there is growing concern about the current modelling

approaches (Ewen et al., 2006; Beven, 2011) because of cumu-

lative uncertainties in regional model projections, including

uncertainties in downscaling procedures, land-use and land-

cover changes and choices of hydrological models.

To investigate the effects of climate change on
ecological diversity

Genetic diversity

La98 suggested giving increased attention to studies linking

genetic diversity with relevant ecosystem functions. However,

there is still little knowledge of the adaptive variability present in

the different MTEs. The technical difficulty of some measure-

ments, the time-consuming nature of the relevant experiments

and the large sample sizes required to determine heritability or
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selection on functional traits have limited the implementation

of reciprocal transplants and/or common garden studies, par-

ticularly for long-lived species (Ackerly, 2006). Exceptions

include economically important species for which provenance

trials have allowed the estimation of ecotypic variation in

growth and functional traits (e.g. Ramírez-Valiente et al., 2009;

Kurt et al., 2012).

Significant advances have been made in the last decade in

understanding the range dynamics of mediterranean species in

response to past climatic changes to validate predictions on

ecological and evolutionary consequences of current climate

change (e.g. Petit et al., 2005, 2008). In addition, there has been

mounting evidence showing that maintaining genetic diversity

within natural populations can maximize their potential to

withstand and adapt to biotic and abiotic disturbances (Jump

et al., 2008).

Species and functional diversity

Since La98 noted the effects of diversity on ecosystem function-

ing (DEF), those effects have continued to be intensely discussed

in MTEs, although the relative importance of DEF in relation to

global change still needs to be further assessed (Larsen et al.,

2005; Dimitrakopoulos, 2010; Maestre et al., 2012). Further, the

role of biodiversity in maintaining human-made systems that

provide high-value ecosystem services is becoming a key issue in

shaping environmental and land-use policies (Díaz et al., 2013).

In the Mediterranean Basin, higher diversity has been associ-

ated with more rapid recovery after fire (Lavorel, 1999). Fire

effects also interact with species richness, increasing biomass

production in rich communities (Dimitrakopoulos et al., 2006).

In most MTEs, restoration of degraded environments due to

human alteration could be facilitated by diversity of vegetation

and associated soil microbes (García-Palacios et al., 2011; Viers

et al., 2012). Recent work also emphasizes the role of diversity in

the face of invasive species (Prieur-Richard & Lavorel, 2000;

Selmants et al., 2012; see also Prieur-Richard et al., 2002, for

contrasting results). Also, the effect on ecosystem functioning of

invasion-induced species impoverishment is a contested issue

(Vilà et al., 2006; Ruwanza et al., 2013).

Aboveground–belowground trophic interactions are of

potential importance in the functioning of MTEs (e.g.

Doblas-Miranda et al., 2009; Janion et al., 2011). Several experi-

ments in mediterranean regions have related soil respiration and

functioning to climate and land-use change (Emmett et al.,

2004; Garnier et al., 2007; Lau & Lennon, 2012).

The expected increase in aridity in most MTEs may impact

plant community dynamics and composition (Lloret et al.,

2009; Matías et al., 2012). However, the heterogeneity of medi-

terranean landscapes and the variety of responses at different

scales give rise to a variety of stabilizing mechanisms promoting

community resilience (Lloret et al., 2012) and make predictions

difficult (Maestre et al., 2005). Climate change could also affect

the biodiversity of important and influential faunal commu-

nities (Botes et al., 2006; Gil-Tena et al., 2009). Another prom-

ising line of research is to disentangle the combined effects of

different factors of change on species and functional diversity

(Gil-Tena et al., 2009; Pasquini & Vourlitis, 2010).

Landscape diversity

The increasing availability of geospatial information at increas-

ing spatial and temporal resolution has facilitated the study of

landscape patterns. Projects in the Mediterranean Basin, in Cal-

ifornia’s mediterranean landscapes and in South Africa have

boosted the development of studies addressing how drivers of

global change might influence diversity and key ecosystem func-

tions at broad spatial scales (e.g. Santos et al., 2006; Aparicio

et al., 2008; García et al., 2011).

Current research is demonstrating that landscape structure

modulates conservation efforts at local scales due to non-linear

effects of landscape diversity on local diversity (Concepción

et al., 2012). Conservation at local scales would be effective only

at intermediate levels of landscape complexity, whereas land-

scape initiatives would be more effective in the simpler and

more complex landscapes (Brotons et al., 2004; Concepción

et al., 2008). Landscape-scale management is crucial for preserv-

ing both biodiversity and the ecosystem services the landscape

provides (Díaz et al., 2013).

The effects of landscape heterogeneity also have a strong tem-

poral dimension. Due to the long history of land-use changes in

the Mediterranean Basin, there is increasing evidence of long-

term impacts of past land uses on the current state of ecosystems

(Puerta-Piñero et al., 2012; Navarro-González et al., 2013). In

this way, several projects have aimed to disentangle the role of

past land uses at different scales and in different ecosystems

(Bonet et al., 2010; Ortega et al., 2010).

UPDATE OF PRIORITIES AND
NEW CHALLENGES

Advancement of research effort in MTEs

In general, the study of global change in mediterranean ecosys-

tems has increased since 1998. The proportion of global change

studies on MTEs remains relatively low, but is now closer to the

proportion of global change studies devoted to other ecosys-

tems, which have diminished (boreal, tropical) or remained

approximately constant (temperate) (Fig. 1). There has been an

increase in studies in all four lines of research proposed by La98,

especially from the mid 2000s, and particularly in the last few

years (Fig. 2). This increase is quite similar for fire regimes,

water availability and quality and ecological diversity, and some-

what lower for biosphere–atmosphere interactions. Studies

about the effects of global change in mediterranean ecosystems

have been mostly carried out in the Mediterranean Basin (88.4%

of total studies), while studies within this region outside Euro-

pean countries (i.e. the southern rim of the Mediterranean

Basin) constitute just a small fraction (7.8% of the Mediterra-

nean Basin studies).

E. Doblas-Miranda et al.
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ecological OR biological) AND (‘land use’ OR ‘land cover’ OR landscape OR climate OR temperature OR humidity OR moisture OR fire
OR invasi* OR atmospher* OR soil OR ‘ecosystem processes’ OR ‘ecosystem function*’) NOT (marine sea).
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New research priorities

Since 1998, great advances have been made in research tech-

niques and knowledge. Most of the research priorities identified

by La98 have been addressed (Table 1), but some remain and

new MTE research topics and priorities have also emerged. Our

evaluation has identified: (1) topics listed in La98 which have

been only partially addressed, (2) new approaches to questions

already suggested by La98, and (3) a new set of emerging issues

(Table 2). We suggest a new classification of these priorities

based on a framework describing how Mediterranean ecosys-

tems will respond to human-induced global change, including

ecosystem services derived from ecosystem functioning, and

incorporating mechanisms of monitoring, studying and seeking

to modify these responses (Fig. 3).

In our proposed scheme, the first step in organizing future

research efforts on global change in MTEs (and other ecosystem

types) is to understand the effect of the drivers of global change

on ecosystem functioning. Second, these processes must be

monitored, and data must be appropriately analysed to produce

useful research outputs. Third, this information should be used

to guide ecosystem management aimed at modifying the

observed or expected effects. Fourth, the link between ecosystem

functioning and ecosystem services should be made explicit, in

order to fully realize the opportunities offered by ecosystem

management in a global change context. Finally, all the previous

steps will depend on spatial and temporal scales of functioning,

observation and management, which should be analysed by

means of ecosystem modelling approaches and well-designed

critical experiments.

Effects of the interactions between the drivers of global change on

ecosystem functioning

To establish the role of the landscape mosaic on fire-spread

A major challenge remains to establish how direct and indirect

fire suppression policies influence fire regimes. These policies

operate in spatially explicit landscapes that are determined by

fuel load and continuity, which in turn determine fire regime.

Specifically, we need to better understand the fraction and dis-

tribution of agricultural land needed to prevent the spread of

megafires, and the role of the critical wildland–urban interface,

as well as the associated modification of landscape structure, in

preventing the massive crown fires that can cause megafires

(Keeley et al., 2012; Loepfe et al., 2012). In addition, the disrup-

Table 1 Overview of the degree of accomplishment of the priorities of La98 by the scientific community. It should be noted that while
practical for abstracting purposes a categorical ‘yes’ or ‘no’ is never applied to science. We recommend therefore that ‘yes’ is considered as
a ‘great effort invested in this particular subject’ and ‘no’ as ‘although some attempts have been made to study the subject, it still needs
further development’.

Previous priorities Accomplishment quick view

1. Understand future fire regimes 1.1 Prediction Effects of land use Partially

Effects of climate Yes

Effects of atmospheric composition No

1.2 Impacts On landscape Yes

On vegetation Partially

Combined with climate change Yes

On ecosystem processes Partially

1.3 Control Prevention Yes

Restoration Partially

2. Study biosphere–atmosphere interactions 2.1 Land use and climate Partially

2.2 Physiology and climate CO2 and temperature Partially

Temperature and biogenic emissions Partially

2.3 Fire emissions Yes

2.4 Coupled models Partially

3. Landscape effects on water 3.1 Patch scale LAI and hydrological response Yes

Hydrological equilibrium Partially

Temporal variability Partially

Simulation models No

3.2 Landscape scale Mapping Yes

Scales and emergent properties Yes

Landscape change Yes

Simulation models Partially

4. Changes in ecological diversity 4.1 Genetic Partially

4.2 Species and functional Partially

4.3 Landscape Partially

LAI, leaf area index.
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tion of the landscape–fire interaction by extreme climatic epi-

sodes should be included in these analyses, and increasing

vulnerability to fires should be addressed in areas where climate

is becoming similar to that of the existing Mediterranean

regions.

To further research the combined effect of different drivers on

biological invasions and pest expansion

Since La98 did not address the impact of fire in combination

with factors other than climate change and land use, it did not

include biological invasions. The effect of biological invasions in

combination with different climatic events (e.g. droughts), dis-

turbance (e.g. fires) and landscape structure (e.g. the wildland–

urban interface) on biodiversity and ecosystem functioning

stands as a priority for future research efforts. For example, the

impact of the combination of fire and invading biota may be

especially important in mediterranean regions where the spread

of invasive species is altering fire regimes. In addition, it is

important to assess the influence of climate change combined

with land-use change in the expansion of certain pest species

(native or not) in previously non-accessible habitats like moun-

tains. This new focus will complement the more classical, but

still much needed, analyses on how responses of keystone

species or communities to global change may ameliorate or

amplify direct effects on forest structure and function (e.g.

Valladares et al., 2013).

To address the interaction between drivers of global change

and recent forest management practices

Human influences have shaped the current structure and com-

position of MTEs and their woodlands. In some regions these

impacts have built up over the last decades as a result of changes

in forest management and land-use practices. In the Mediterra-

nean Basin, for instance, there is a widespread process of forest

Table 2 Proposed research priorities for mediterranean terrestrial ecosystems in the face of global change.

New priorities
Effects of the interactions between drivers of global change on ecosystem functioning

1 To establish the role of the landscape mosaic on fire spread

2 To further research the combined effect of different drivers on biological invasions and pest expansion

3 To address the interaction between drivers of global change and recent forest management practices

Monitoring and data assessment of ecosystem response to global change

4 To obtain more realistic information, at larger temporal and spatial scales, of the impacts of global change and ecosystem services to

be used in models

5 To assess forest mortality events associated with climatic extremes (particularly drought)

Managing ecosystems to enhance resilience

6 To focus global change research on identifying and managing vulnerable areas

7 To use the functional and life-history traits concepts to study resilience and community assembly after disturbance

8 To promote cross-disciplinary research to study the relationship between genotypic and phenotypic diversity as a source of forest

resilience

Embracing the link between ecosystem functions and services

9 To understand how forest management affects the balance between C storage and water resources at large spatial and temporal scales

10 To analyse the interplay between landscape-scale processes and biodiversity conservation along wide gradients of landscape

complexity

Scaling ecosystem dynamics in space and time under different scenarios

11 To refine predictive models by including interactions between global change drivers and socio-economic contexts

12 To use manipulative, interdisciplinary and multiscale experiments to understand forest–atmosphere feedbacks

13 To improve the representation of key mechanisms linking plant hydraulics with landscape hydrology

Figure 3 Framework for global change research priorities in
mediterranean terrestrial ecosystems. The framework is structured
according to different causal and observational pathways, as
follows: (1) effects of the interactions between global change
drivers on ecosystem functioning; (2) monitoring and data
assessment of ecosystem response to global change; (3) managing
ecosystems to enhance resilience; (4) embracing the link between
ecosystem functions and services; (5) scaling ecosystem dynamics
in space and time under different scenarios.

Global change research in MTEs
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densification owing to widespread abandonment of intensive

forest management. This process has critical implications in a

global change context, as it affects fire spread and recovery after

fire (e.g. Puerta-Piñero et al., 2012) and increases the competi-

tion for water and therefore the likelihood of drought-induced

forest die-off (Martínez-Vilalta et al., 2012). Although the

demographic implications of the interaction between changes in

climate and competition are starting to be addressed

(Vilà-Cabrera et al., 2011; Ruiz-Benito et al., 2013) there is an

urgent need to expand these studies in order to disentangle the

contribution of different drivers (and their interaction) to

current stand dynamics and to translate this information into

credible models of future forest dynamics.

Monitoring and data assessment of ecosystem response to

global change

To obtain more realistic information, at larger temporal and

spatial scales, of global change impacts and ecosystem services

to be used in models

La98 advised that, in order to disentangle the effects of land-

scape change on hydrological properties, research on larger

spatial scales is necessary. In fact, other ecosystem services such

as carbon storage are also better defined and studied at larger

spatial scales and over longer time-scales (e.g. Vayreda et al.,

2012). Similar reasoning can be applied to the factors that alter

these services. For example, there is a need for reliable informa-

tion on the efficiency of different fire and fuel management

alternatives at reasonably large spatiotemporal scales. Long-

term manipulative experiments show that ecosystem responses

to disturbance frequently change over time (e.g. Barbeta et al.,

2013). Thus, the data inputs for model calibration and valida-

tion should include, to the extent possible, long time series of

observational data as well as long-term ecosystem manipulation

experiments (Ecotron) focusing on key drivers (cf. Beier et al.,

2012).

To assess forest mortality events associated with climatic

extremes (particularly drought)

The drought-induced forest decline detected during recent

decades remains insufficiently understood, as it is not yet known

which biological mechanisms are involved and which factors

other than drought have played causal roles. In MTEs, elevation,

substrate, plant composition, stand structure and soil biota all

appear to contribute to forest die-off (e.g. Martínez-Vilalta et al.,

2012). Forest history and, particularly, management, appear to

be key drivers, for instance by determining current forest struc-

ture and composition. Strategic actions include long-term

monitoring at a regional scale, with implementation of common

protocols, and rapid identification of new events (using for

example remote sensing or UAVs), which would make it possible

to study the process while it is happening. These actions would

benefit critically from the involvement of forest owners and

governmental agencies.

Managing ecosystems to enhance resilience

To focus global change research on identifying and managing

vulnerable areas

Future research efforts should aim at identifying areas that

might suffer from the combination of multiple drivers of climate

change. For instance, mountains and sub-mediterranean zones

may be particularly susceptible to the likely increase of climatic

fire risk because these are landscapes that have not previously

faced high fire risks and therefore may have low vegetation resili-

ence (Lloret et al., 2005). Other susceptible areas include those

where land-use transformation has led to a high fuel load and

thus a high risk of massive crown fires. Similarly, the recent

increase in temperature is likely to favour insect expansion, and

unprecedented insect outbreaks can arise in areas with high tree

density and landscape connectivity. The resulting management

agenda should include the adaptation of MTEs to more arid

conditions, for instance by species selection, or by management

of stand and landscape structure and water use. Here, one major

challenge is to determine how the suppression of wildfires and

other management actions could eventually induce non-

reversible state transitions of vegetation types and structure,

resulting in service-impoverished states.

To use functional and life-history traits concepts to study

resilience and community assembly after disturbance

Although the possibility of threshold-type responses in ecosys-

tems is real and should be taken into account, the resilience of

ecosystems to climate change is frequently substantial and

deserves further study (cf. Lloret et al., 2012). Given the variabil-

ity of species responses to different disturbance types (e.g. the

responses of plants to fire regimes; Pérez et al., 2003; Rey

Benayas et al., 2007) and the complexity of the factors shaping

community dynamics there is an urgent need to find synthetic,

yet powerful approaches to predict the ecosystem-level effects of

environmental changes. In that respect, the functional trait

concept has strong conceptual appeal (Lavorel & Garnier, 2002),

although its empirical applicability remains to be properly

established.

To promote cross-disciplinary research to study the

relationship between genotypic and phenotypic diversity as a

source of forest resilience

Given the complexities underlying evolutionary processes, there

is a clear need to intensify cross-disciplinary research among

different disciplines such as genetics, genomics, demography,

functional ecophysiology and animal–plant interactions in

order to investigate the effects of climate change on genetic

diversity. Reciprocal transplants and common garden experi-

ments, linked to next-generation sequencing approaches, have

yet to be fully applied in mediterranean contexts. To understand

how mediterranean species will respond to global change in the

long term and what the genetic basis of this response will be, it

E. Doblas-Miranda et al.
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is essential to identify genes under natural selection, as well as to

ascertain the relationship between naturally occurring geno-

typic and phenotypic diversity.

Embracing the link between ecosystem functions and services

To understand how forest management affects the balance

between C storage and water resources at large spatial and

temporal scales?

It has been recently suggested that management could increase

the C storage capacity of forests (Vayreda et al., 2012), although

the detailed mechanisms are yet to be properly characterized.

Indeed, when assessing the C absorption capacity of MTE

forests it is necessary to consider the importance of the water

balance; tree density and species should be managed cautiously

since high transpiration rates also imply high water losses in the

system. The search for management practices favouring C

storage should take into account the risk of forest decline due to

scarcity of water.

To analyse the interplay between landscape-scale processes

and biodiversity conservation along wide gradients of

landscape complexity

Overall, large-scale collaborative efforts among teams in differ-

ent regions should be promoted and prioritized in order to fully

understand how and why landscape processes influence the

responses of MTEs to global change. Biodiversity is likely to be

crucial in modulating such responses, so effective conservation

strategies over wide gradients of landscape complexity need to

be designed and effectively implemented. In addition, research

on the social and economic role of biodiversity in the mainte-

nance of land-use systems is urgently needed (Campos et al.,

2013) in order to establish how and why biodiversity is contrib-

uting to the ecological and economic sustainability of mediter-

ranean low-intensity management systems of high natural

value.

Scaling ecosystem dynamics in space and time under

different scenarios

To refine predictive models by including interactions between

drivers of global change and socio-economic contexts

More attention should be given to anthropogenic factors when

generating landscape projections (Serra et al., 2008), to under-

stand not only future fire impacts (Brotons et al., 2013) but also

other components of global change such as biological invasions

and land-use changes, taking into account interactions between

these major drivers and the impacts on associated ecosystem

services (Campos et al., 2013). Among these factors, further

research needs to focus on the integration of the socio-economic

scenarios that are already available into predictive models of

land-use-driven climatic change (Verburg et al., 2010). The

development of reference scenarios of land-use and forest change

that can be used consistently together with available climate

change scenarios remains a gap in current global change science.

Furthermore, even if the present review is focused on forests,

shrublands and pastures, the simulation of biosphere–

atmosphere interactions in other key ecosystems such as crop-

lands and urban environments should be considered.

To use manipulative, interdisciplinary and multiscale

experiments to understand forest–atmosphere feedbacks

La98 were already conscious that manipulative experiments at

large scales are needed to fully understand the feedbacks

between terrestrial ecosystems and the atmosphere, in addition

to a wider use of historical data. We have learned from a first

generation of manipulative field experiments and we are now

in a position to use new designs that are larger is scope and

make full use of research networks working with standardized

protocols (see the review by Beier et al., 2012, for precipitat-

ion manipulation experiments). Multifactorial (e.g. CO2 ×
warming × drought) and interdisciplinary experiments com-

bining different experimental approaches (field and microcosm

experiments) with the use of innovative techniques (e.g. genome

pyrosequencing, solid-state nuclear magnetic resonance) will

facilitate the identification of key mechanisms and their integra-

tion into predictive models. Emerging issues, such as altered

BVOC emissions, nutrient imbalances and soil microbial pro-

cesses, deserve special attention.

To improve the representation of key mechanisms linking

plant hydraulics with landscape hydrology

There is a need for improved representations of soil and plant

hydraulics in process models of water and carbon fluxes, both

in general and for mediterranean vegetation in particular (e.g.

Hernández-Santana et al., 2009). Mechanisms leading to

drought-induced vegetation die-off are poorly understood and

their representation in models is frequently inadequate

(McDowell et al., 2013), which limits our capacity to predict

vegetation shifts and corresponding ecosystem-level implica-

tions (Anderegg et al., 2013). In addition, hydrological

predictions are complicated by the difficulty in properly

accounting for ‘natural’ successional dynamics and predicting

stochastic events like insect outbreaks and the occurrence of

fire.

BROAD RECOMMENDATIONS

From the full list of priorities offered in Table 2, three broad

recommendations serve as a conclusion.

1. The interactive nature of different global change drivers

remains poorly understood. Different global change factors and

their interactions, as well as socio-economic constraints, must

be included in the forecasts and modelling of future ecosystem

changes.

2. There is a critical need for rapidly developing regional- and

global-scale models. Better networking of research data, as well

Global change research in MTEs

Global Ecology and Biogeography, © 2014 John Wiley & Sons Ltd 11



as manipulative experiments, covering different abiotic and

biotic factors and different temporal and spatial scales, is needed

to calibrate and validate these ecological models.

3. More attention should be directed at emerging issues espe-

cially related to MTEs in the face of global change, including

recent drought-related forest decline and the current conse-

quences of historical land uses.

Although the MTEs are the focus on our evaluation and are

the direct targets of our recommendations, we believe that these

ecosystems serve as good reference laboratories for global

change research more broadly and that our broad recommen-

dations can be applied to other ecosystem types. Global change

research in MTEs, and especially in the Mediterranean Basin, is

mature enough to move a step forward and launch into a inte-

grative phase. In this phase, research on global issues should

become more inclusive and allow the development of joint pro-

jections on how ecosystems and the services they provide are

expected to react to different scenarios of future change. This is

the information that societies are likely to need in order to adapt

to the new, uncertain changes to come.
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